GM(1,1)正弦模型修补气温监测缺失数据的探讨

郭赞洪, 唐其环
（西南技术工程研究所, 重庆 400039）

摘要: 目的 建立预测精度较好的大气温度监测缺失数据修补的方法和模型。方法 采用正弦函数对GM(1,1)标准模型进行修正, 建立分段的GM(1,1)正弦修正模型对缺失数据进行修补。以万宁试验站某日监测的温度日记时值数据为试验数据, 同时建立GM(1,1)标准模型、GM(1,1)时序修正模型和GM(1,1)正弦修正模型, 对比分析各模型的修补误差, 确立较好的修补模型。结果 从模型的拟合效果分析, GM(1,1)标准模型和GM(1,1)正弦修正模型的拟合性最好, GM(1,1)时序修正模型的拟合性相对较差一些；从预测精度上分析, GM(1,1)标准模型和GM(1,1)时序修正模型预测修补效果差, 平均相对误差分别达到22.54%和17.70%, 而GM(1,1)正弦修正模型预测修补的平均误差仅为3.14%, 得到了较大的改进, 预测效果好。结论 正弦修正模型能很好地修补缺失数据, 其修补效果比时序修正模型和标准模型都要好。

关键词: GM(1,1); 正弦修正模型; 时序修正模型; 标准模型; 模型拟合; 预测修补

DOI: 10.7643/issn.1672-9242.2015.01.006

中图分类号: TJ99; N941 文献标识码: A 文章编号: 1672－9242(2015)01－0025－06

Exploration of Repairing Temperature Monitoring Patch Missing Data with GM(1,1) Sinusoidal Model

GUO Zan-hong, TANG Qi-huan
(South West Institute of Technical Engineering, Chongqing 400039, China)

ABSTRACT: Objective To establish a method and model with better prediction accuracy for repairing atmospheric temperature monitoring missing data. Methods GM (1, 1) standard model was modified by sine function, and the missing data was repaired by the segmented GM (1, 1) sinusoidal model established. Using the temperature diary time value data monitored one day in Wanning station as the test data, the GM (1, 1) standard model, GM (1, 1) timing corrected model and GM (1, 1) sinusoidal model were established at the same time. Missing data repairing by the three models were comparatively analyzed, and the relatively better repair model was determined. Results From the analysis of the model fitting results, the fitting of the GM (1, 1) standard model and GM (1, 1)
sinusoidal model was the best, while fitting of the GM (1, 1) timing corrected model was relatively poor. From the prediction accuracy of the analysis, GM (1, 1) standard model and GM (1, 1) timing corrected model showed poor results in repairing prediction, with the average relative errors of 22.54% and 17.70%, respectively. Whereas the average prediction error of GM (1, 1) sinusoidal model was only 3.14%, which showed great improvement, and had a good prediction result. Conclusion GM (1, 1) sinusoidal model could well repair the missing data, and its result was better than those of GM (1, 1) standard model and GM (1, 1) timing corrected model.

KEY WORDS: GM (1, 1); sinusoidal model; timing corrected model; standard model; model fitting; repairing prediction

环境条件对装备的使用或长期放置有重要的影响, 文献[1—5]介绍了不同环境条件对于装备器械的影响, 因此, 了解环境的各性质很重要。其中, 温度是气象站或者相关试验站要监测的一个基本气象因素。而用于在检测过程中, 仪器的突然损坏, 采集数据时突然出错等原因, 会造成某段时间温度数据的缺失, 如何对这部分数据进行修补至关重要。灰色系统法改进后的 GM (1, 1)模型, 对于某些时序数据的预测具有一定的改进。文中将 GM (1, 1)标准模型改进后, 预测效果得到了较大的提高。唐五湘等人[6—7]研究了人工监测数据和自动站监测数据的相互填补, 但随着信息自动化, 人工检测将被完全取代。灰色系统法改进中的 GM (1, 1)模型应用应在许多领域中常用于缺失数据修补, 而且是灰色系统法中应用最多的方法[8—9]。

GM (1, 1)标准模型法适合于具有指数型性质增加或减小的数据, 而不是所有的数据都恰好满足这样的要求。因此, 不同领域的学者们对 GM (1, 1)标准模型进行改进, 以适用于该领域数据变化情况[13—30]。Zou Lihua[10], 范凯[11]和彭涛[12]分别在振动数据、量测数据和软基沉量数据方面采用将 GM (1, 1)模型进行改进、结果可知, 针对不同数据变化规律 GM (1, 1)模型进行改进后, 预测效果得到了较大的提高。唐五湘等人[13—20]提出的时序修正法改进后的 GM (1, 1)模型即 GM (1, 1)时序修正模型, 对于某些时序数据的预测具有一定的改进。文中研究的对象是大气温度数据, 根据大气温度数据的变化情况, 提出了以正弦函数对 GM (1, 1)标准模型进行改进, 得到 GM (1, 1)正弦修正模型, 对大气温度数据具有较好的预测修补作用。

文中将以万宁试验站监测的温度数据作为原始数据, 采用 GM (1, 1)正弦修正模型与 GM (1, 1)时序修正模型以及 GM (1, 1)标准模型进行缺失修补对比分析研究。

1 数学模型

1.1 GM(1,1)标准模型

根据 GM (1, 1)标准模型法的建模过程要求, 对原始数据 \(X^n \) 进行一次累加生成得到 \(X^n' \), 如下:

\[
X^n'=[X^n(1), X^n(2), X^n(3), \cdots, X^n(n)]
\]

作一次累加公式为:

\[
X'(n) = \sum_{i=1}^{n} X(i) \quad (n=1, 2, 3, \cdots, n)
\]

得到:

\[
X^n'=[X^n(1), X^n(2), X^n(3), \cdots, X^n(n)]
\]

建立 \(X^n' \) 如下的白化微分方程为:

\[
\frac{dx(t)}{dt} + a \cdot x(t) = u
\]

式(2)中的 \(a \) 和 \(u \) 为待求参数, 记参数列为:

\[a = \begin{bmatrix} a \\ u \end{bmatrix}\]

采取最小二乘法求解 \(a \), \(a = (B' B)^{-1} B' y \)。其中, \(B \) 和 \(y \) 分别为:

\[
B = \begin{bmatrix} \frac{-1}{2}(X^n(1) + x(1)(2)) & 1 \\ \vdots & \vdots \\ \frac{-1}{2}(X^n(n - 1) + x(n)(n)) & 1 \end{bmatrix}
\]

\[y = [X^n(2), X^n(3), \cdots, X^n(n)]^T\]

解出白化微分方程的解为:

\[
\hat{x}(t + 1) = \left(X^n(1) - \frac{u}{a} \right) e^{-at} + \frac{u}{a}
\]

式(4)即为通过原始数据建立起来的 GM (1, 1)模型。

1.2 GM(1,1)时序修正模型

根据唐五湘[21]提出的时序修正法对 GM (1, 1)模型进行改进。该文提出 GM (1, 1)标准模型已确定
改进1；
\[
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{-\sqrt{a} \dot{t}} + \frac{\mu}{a}
\]
改进2；
\[
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{\sqrt{a} \dot{t}} + \frac{\mu}{a}
\]
改进3；
\[
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{2 \sqrt{a} \dot{t}} + \frac{\mu}{a}
\]
改进4；
\[
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{\frac{\mu}{2} \dot{t} \dot{t}} + \frac{\mu}{a}
\]
改进5；
\[
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{\frac{\mu}{2} \dot{t} \dot{t}} + \frac{\mu}{a}
\]
经检验后，模型建模部分采用标准模型建模，预测部分采用改进5模型。因为标准模型和改进5模型分段使用时具有较好的拟合性，对该类温度数据具有较好的适应性。故GM(1,1)正弦修正模型为：
\[
\begin{cases}
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{-\sqrt{a} \dot{t}} + \frac{\mu}{a}, t < n \\
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{\sqrt{a} \dot{t}} + \frac{\mu}{a}, t \geq n \\
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{2 \sqrt{a} \dot{t}} + \frac{\mu}{a}, t \geq n \\
\dot{X}^{(1)}(t + 1) = (X^{(0)}(1) - \frac{\mu}{a}) e^{\frac{\mu}{2} \dot{t} \dot{t}} + \frac{\mu}{a}, t \geq n
\end{cases}
\]
其中n为建模时的原始数据个数。

2 实例应用

文中以万宁试验站所监测的温度数据为基础，对以上模型进行检验。该试验站9月份的连续小时温度数据见表1。根据表1的原始数据建立相应模型。

2.1 GM(1,1)模型建立

用前9个数据作为原始数据建立GM(1,1)模型。
2.2 GM(1,1)标准模型

根据表1、式(3)和式(4)，建立GM(1,1)标准模型为:

\[\hat{x}^{(1)}(t+1) = -2 \times 169.527 \times 04e^{-0.020394t} + 2197.562 \times 04 \quad (12) \]

2.3 GM(1,1)时序修正模型

根据式(8)可以求出具体数值，见表2。

表2 \(\Box t \)的计算值
Table 2 The calculated values of \(\Box t \)

<table>
<thead>
<tr>
<th>(t/h)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Box t/h)</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>(t/h)</td>
<td>13.29</td>
<td>14.36</td>
<td>15.43</td>
<td>16.51</td>
<td>17.58</td>
<td>18.65</td>
<td>19.72</td>
<td>20.80</td>
<td>21.87</td>
<td>22.94</td>
<td>24.01</td>
<td>25.09</td>
</tr>
</tbody>
</table>

\[\hat{x}^{(1)}(t + 1) = -2 \times 169.527 \times 04e^{-0.020364(t + 1)} + 2197.562 \times 04 \quad (13) \]

2.4 GM(1,1)正弦修正模型

根据原始数据和式(11)，可以求出GM(1,1)正弦修正模型为:

\[\hat{x}^{(1)}(t + 1) = -2 \times 169.527 \times 04e^{-0.020364(t + 1)} + 2197.562 \times 04 \quad (14) \]

3 结果分析

分别对式(12)、(13)和(14)进行计算，对结果进行精度检验，得到绝对误差和相对误差精度检验，见表3。(预测精度=1-相对误差)

分析表3数据可知，从模型的模拟情况分析，GM(1,1)正弦修正模型与GM(1,1)标准模型具有相同的拟合平均误差(和平均相对误差)，平均绝对误差只有0.2，平均相对误差也仅0.60%，具有与原始数据相当好的拟合效果。GM(1,1)时序修正模型的拟合平均绝对误差为0.6，平均相对误差为2.29%，虽然略大于另外两种，但拟合效果也不错。预测值的准确性的程度才是我们最关心的，GM(1,1)标准模型的预测平均绝对误差为6.7，平均相对误差为22.54%；GM(1,1)时序修正模型的预测平均绝对误差为5.3，平均相对误差为17.70%；GM(1,1)正弦修正模型的预测平均绝对误差为0.9，平均相对误差为3.14%。无论是从平均绝对误差还是相对误差来分析，GM(1,1)正弦修正模型相较于GM(1,1)标准模型和GM(1,1)时序修正模型有了很大的改进，预测的准确性得到了极大的提高。GM(1,1)标准模型的预测值的误差基本都超过了20%，GM(1,1)时序修正模型的预测误差也超过17%，而GM(1,1)正弦修正模型的预测误差绝大部分未超过6%，非常好地预测了原始值。

GM(1,1)标准模型、GM(1,1)时序修正模型、GM(1,1)正弦修正模型与原始数据的图形对比如图1所示，从模型的拟合分析来看，前9个点为模型拟合，GM(1,1)标准模型和GM(1,1)正弦修正模型的拟合很好，GM(1,1)时序修正模型的拟合相对较差一些。从预测部分看，GM(1,1)正弦修正模型从趋势和数值上很好地贴近原始数据的变化情况，而GM(1,1)标准模型和GM(1,1)时序修正模型则与原始数据相差太大，也未能符合原始数据的变化趋势，数值上也相差太多，所以，GM(1,1)正弦修正模型的预测效果远高于另外两种模型。因而，无论从模型拟合还是预测效果上，GM(1,1)正弦修正模型
表3 三种模型的误差及其精度计算结果
Table 3 The error and precision calculation results of the three kinds of models

<table>
<thead>
<tr>
<th>序号</th>
<th>原始数据</th>
<th>GM(1,1)标准模型</th>
<th>GM(1,1)时序修正模型</th>
<th>GM(1,1)正弦修正模型</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>x_0</td>
<td>x_0</td>
<td>d</td>
<td>$s%$</td>
</tr>
<tr>
<td>1</td>
<td>28.0</td>
<td>28.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>27.6</td>
<td>27.4</td>
<td>0.3</td>
<td>0.93</td>
</tr>
<tr>
<td>3</td>
<td>26.9</td>
<td>27.0</td>
<td>0.1</td>
<td>0.42</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>26.7</td>
<td>0.2</td>
<td>0.81</td>
</tr>
<tr>
<td>5</td>
<td>26.1</td>
<td>26.3</td>
<td>0.3</td>
<td>0.96</td>
</tr>
<tr>
<td>6</td>
<td>26.2</td>
<td>26.0</td>
<td>0.2</td>
<td>0.80</td>
</tr>
<tr>
<td>7</td>
<td>25.9</td>
<td>25.7</td>
<td>0.2</td>
<td>0.83</td>
</tr>
<tr>
<td>8</td>
<td>25.2</td>
<td>25.4</td>
<td>0.1</td>
<td>0.47</td>
</tr>
<tr>
<td>9</td>
<td>25.1</td>
<td>25.0</td>
<td>0.0</td>
<td>0.08</td>
</tr>
<tr>
<td>10</td>
<td>26.0</td>
<td>24.7</td>
<td>1.2</td>
<td>4.78</td>
</tr>
<tr>
<td>11</td>
<td>28.0</td>
<td>24.4</td>
<td>3.5</td>
<td>12.67</td>
</tr>
<tr>
<td>12</td>
<td>30.4</td>
<td>24.1</td>
<td>6.3</td>
<td>20.67</td>
</tr>
<tr>
<td>13</td>
<td>31.0</td>
<td>23.8</td>
<td>7.2</td>
<td>23.12</td>
</tr>
<tr>
<td>14</td>
<td>31.4</td>
<td>23.5</td>
<td>7.9</td>
<td>25.18</td>
</tr>
<tr>
<td>15</td>
<td>31.2</td>
<td>23.2</td>
<td>8.0</td>
<td>25.66</td>
</tr>
<tr>
<td>16</td>
<td>31.8</td>
<td>22.9</td>
<td>8.9</td>
<td>28.00</td>
</tr>
<tr>
<td>17</td>
<td>32.0</td>
<td>22.6</td>
<td>9.4</td>
<td>29.29</td>
</tr>
<tr>
<td>18</td>
<td>31.8</td>
<td>22.3</td>
<td>9.5</td>
<td>29.83</td>
</tr>
<tr>
<td>19</td>
<td>30.8</td>
<td>22.1</td>
<td>8.8</td>
<td>28.50</td>
</tr>
<tr>
<td>20</td>
<td>28.2</td>
<td>21.8</td>
<td>6.4</td>
<td>22.65</td>
</tr>
<tr>
<td>21</td>
<td>27.3</td>
<td>21.5</td>
<td>5.8</td>
<td>21.10</td>
</tr>
<tr>
<td>22</td>
<td>27.0</td>
<td>21.2</td>
<td>5.7</td>
<td>21.25</td>
</tr>
<tr>
<td>23</td>
<td>26.9</td>
<td>21.0</td>
<td>6.0</td>
<td>22.20</td>
</tr>
<tr>
<td>24</td>
<td>27.0</td>
<td>20.7</td>
<td>6.3</td>
<td>23.25</td>
</tr>
</tbody>
</table>

注: 表中θ表示绝对误差, s表示相对误差。

标准模型和GM(1,1)时序修正模型有很好的改进,且预测值很好地符合了原始数据的变化规律,预测精度也比另外两种模型提高了很多,具有较高的预测精度。由于分析数据具有一定的局限性,该模型有待进一步研究。

参考文献:

出版, 2000.
GJB 150.16A—2009, Military Equipment Laboratory Environmental Test Methods Part 16: Vibration Test [S].