热声复合环境下薄壁锥壳结构响应计算 与疲劳寿命预估

王建¹,沙云东²,杜英杰¹,顾菘¹,孙智超¹

(1.成都航空职业技术学院 航空工程学院,成都 610100; 2.沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室,沈阳 110136)

摘要:目的研究热声复合环境下薄壁锥壳结构的动力学响应与疲劳寿命。方法采用耦合的有限元/边界元法,完成不同热声载荷下的振动应力计算。基于改进的雨流计数法,对不同热声载荷下危险点位置及典型位置的疲劳寿命进行预估。结果 屈曲前随温度的增加,薄壁锥壳结构的基频降低,屈曲后在一定温度范围内时,基频增加。薄壁锥壳结构的应力集中主要出现在孔边位置,基频在热声激励响应中起主导作用。低阶固有频率处存在较大峰值,高阶频带范围内的峰值较小,模态密度较高。结论在 800~1000 ℃的温度载荷与强声载荷下,薄壁锥壳结构的疲劳寿命只能维持几个小时,所以在抗声疲劳结构设计中要考虑响应谱的频率结构,及注重结构孔边位置的结构设计。

关键词: 热声环境; 锥壳结构; 疲劳寿命; 耦合的有限元/边界元; 改进的雨流计数法

DOI: 10.7643/ issn.1672-9242.2018.12.017

中图分类号: V241.3 文献标识码: A

文章编号: 1672-9242(2018)12-0091-07

Response Calculation and Fatigue Life Prediction of Thin-walled Conical Shell Structures under Thermal-acoustic Complex Environment

WANG Jian¹, SHA Yun-dong², DU Ying-jie¹, GU Song¹, SUN Zhi-chao¹

 Department of Aircraft Maintenance Engineering, Chengdu Aeronautic Polytechnic, Chengdu 610100, China,
 Liaoning Key Laboratory of Advanced Test Technology for Aeronautical Propulsion System, Shenyang Aerospace University, Shenyang 110136, China)

ABSTRACT: Objective To study dynamic response and fatigue life of thin-walled conical shell structures in a thermal-acoustic complex environment. **Methods** The coupled finite element/boundary element (FEM/BEM) method was used to calculate the vibration stress under different thermal-acoustic loads. Based on the improved rain flow counting method, the fatigue life of the dangerous points and typical locations under different thermal-acoustic loads were estimated. **Results** The fundamental frequency of the thin-walled conical shell structure decreased firstly with the increase of the temperature before bending and then increased in certain temperature range after bending. The stress concentration of the thin-walled conical shell structure mainly occurred at the edge of the hole. The fundamental frequency played a dominant role in the thermal-acoustic excitation response. There were large peaks at the low-order natural frequencies and small peaks in the high-order frequency band with high modal density. **Conclusion** In thermal environment from 800 °C to 1000 °C, the fatigue life can only be reached for a few hours,

作者简介:王建(1990-),男,四川人,硕士,主要研究方向为航空发动机强度、振动及噪声。

收稿日期: 2018-07-25; 修订日期: 2018-08-09

基金项目:四川省教育厅自然科学项目(No. 18ZB0057);成都航空职业技术学院自然科学项目(No. 061754);四川省科技计划项目(No. 2018SZ0357)

when the structures bear the strong acoustic loads. Hence, in the anti-acoustic fatigue structural design, the frequency distribution of the response spectrum should be considered, and it is important to pay more attention to design of structural hole edge. **KEY WORDS:** thermal-acoustic environment; conical shell structure; fatigue life; coupled FEM/BEM method; improved rain flow counting method

随着世界各国国防建设和军备技术要求的不断 加强,以及航空产业的高速发展,现代航空飞行器及 其发动机的性能要求也不断提高,航空航天飞行器的 工作环境也变得极为苛刻^[1-3]。为了达到高标准的性 能要求和准则,高温合金薄壁结构被广泛地应用在航 空飞行器及其发动机的各个部附件之中。这些薄壁结 构在超高音速的环境下,承受着严峻的外界载荷,如 超高温热载荷、强噪声载荷、机械振动载荷、气动力 载荷等。这些载荷联合作用在结构上,将会严重影响 结构的强度、刚度及稳定性,进一步削弱结构的疲劳 性能,从而降低结构的疲劳寿命^[4-6]。研究发现,热 声复合环境下金属薄壁结构的疲劳预测是国内外学 者及研究机构的共同难题。

考虑到高温强噪声环境下进行试验的费用高昂, 获取可靠的数据困难等,国内外的专家学者针对热声 疲劳问题开展了大量的理论研究。其中, Rizzi S. A 与 Przekop A 针对结构在高强度噪声载荷作用下的疲 劳寿命进行了预测^[7]。S. Maekawa^[8]使用局部应力应 变法、Manson-Coffin 公式和线性累积损伤理论研究 了室温和高温时蒙皮结构的声疲劳寿命,分析了热屈 曲对结构疲劳寿命的影响规律。前屈曲时结构疲劳寿 命伴随热载荷的增加而逐渐降低,后屈曲时由于非线 性出现,结构疲劳寿命增加。当热载荷继续升高,由 于拉伸应力均值的影响,疲劳寿命将下降。J.L. Chaboc 通过考虑平均应力的影响,基于损伤曲线的 疲劳估算方法^[9]研究了非线性疲劳损伤模型。K.B. Chilakamarri 和 J. Lee 研究了跳变区域内结构的疲劳 损伤累积模型^[10],通过假设跳变的发生服从泊松过 程,并且结构在应力绝对值相等的两个位置间跳变,

推导了以跳变率表示寿命计算公式。A. Przekop^[11]研 究了适用于热声载荷作用下金属结构疲劳寿命估算 的几个高周疲劳模型。此外,国内的高等教育机构以 及研究机构实施了有关飞行器薄壁部件的相关理论 以及仿真计算的研究。辽宁省航空推进系统先进测试 技术重点实验室沙云东教授先后采用了概率密度 法^[12]、功率谱密度法^[13]、局部应力应变场强法^[14]、 改进雨流计数法^[15-18]对薄壁结构在热声载荷激励下 的疲劳寿命进行了仿真计算与研究。

文中基于耦合的有限元/边界元法,选取一个薄 壁锥壳结构作为仿真计算对象,完成该对象在热载荷 与声载荷作用下的振动应力计算与分析。同时,结合 改进的雨流计数法、Morrow 平均应力模型和 Palmgren-Miner线性累积损伤理论,完成了危险点位 置的疲劳寿命预估与分析。

1 锥壳结构振动应力计算与分析

仿真计算所选材料的参数见表 1, 几何模型如图 1 所示。考虑到高温强噪声环境下薄壁锥壳结构非线性动力学响应的特点,在有限元建模过程中选取 SHELL181 单元作为计算单元,每个单元具有 4 个节点,每个节点具有 6 个自由度。由于计算对象具有对称性,排孔分布均匀,且通过计算发现,有限元网格单元尺寸大小对计算结果的影响较小,收敛性较好,故对锥壳结构进行了如图 2 所示的有限元网格划分。其中,由于孔边位置的应力梯度较大,故该位置部分进行了网格细分处理。计算时,对薄壁锥壳结构的上下边缘处进行固支约束。

温度/℃	E/GPa	μ	$\alpha/(10^{-6} \cdot °C^{-1})$	$ ho/(10^3 { m kg} { m \cdot m}^{-3})$	$K/(W \cdot °C^{-1})$
20	213	0.301	13.4	9.09	15.4
450	170.37	0.320	13.7	9.09	20.1
600	155.5	0.327	14.4	9.09	27.1
1400	75.0	0.362	18.1	9.09	43.2

表 1 不同温度下的材料参数

1.1 模态计算与分析

计算得出薄壁锥壳在两端固支的约束条件下,其临界屈曲温度 t_{cr}=96.071 ℃,定义屈曲系数 S=t/t_{cr}。 薄壁锥壳结构在临界屈曲前和屈曲后的第一阶热模 态频率见表 2。观察表中数据发现,在屈曲前,薄壁 锥壳结构的第一阶模态频率(基频)随温度的增加而 减小; 屈曲后, 在的一定温度范围内, 第一阶热模态 频率随温度的增加而降低。这符合薄壁结构屈曲前软 化, 屈曲后硬化的规律特性。

1.2 应力计算与分析

在薄壁锥壳结构的振动应力计算中,选取两个典型热载荷分别为 800 ℃与 1000 ℃(考虑某型发动机

图 1 几何模型尺寸

图 2 有限元计算模型

衣 2 屈田前/后的弟一所然侯恋频率										
屈曲系数 S	0	0.1	0.2	0.3	0.4	0.5	0.6			
基频/Hz	246.23	241.51	236.56	230.86	224.77	218.22	211			
屈曲系数 S	0.7	0.8	0.9	1	1.1	1.2	1.3			
基频/Hz	202.68	192.3	176.54	43.02	57.16	139.66	190.49			

7人 ナカ ナサ

바포 궁

的实测载荷数据),基于耦合的有限元/边界元法 (FEM/BEM),计算锥壳结构在不同声压级下的动 力学响应。其中, 声载荷为 143~161 dB 的有限带宽 高斯白噪声载荷,间隔3dB。频率带宽为26~1322Hz, 频率间隔为6Hz,频率范围覆盖薄壁锥壳结构的低阶 模态,并且声载荷以功率谱密度形式加载到薄壁锥壳 结构表面。薄壁锥壳结构在热声激励载荷作用下产生 随机振动响应,在结构内部形成动态应力和应变。当 声载荷频率与结构固有频率相同时,将引起薄壁锥壳 结构孔边位置出现应力集中和高频疲劳失效,出现疲 劳裂纹,甚至发展成断裂等。计算发现,薄壁锥壳结 构的危险点位置在孔边附近单元号 1626 和单元号 1674, 典型的位置单元如图 3 所示。

1.2.1 危险点位置应力分布

在给定温度分别为800℃与1000℃的条件下, 对比分析不同声压级下薄壁锥壳结构上孔边与下孔 边危险点位置单元处的应力功率谱密度(PSD)。其 中,在 800 ℃下,单元 1674 位置的应力 PSD 如图 4 所示。表3给出了薄壁锥壳结构危险位置在基频处的 最大 Von Mises 应力。

由不同声压级下薄壁锥壳结构危险点位置应力 PSD 和 Von Mises 应力分析表明,在 26~1322 Hz 频 带高斯白噪声载荷作用下,多阶固有频率处都被激起

图 3 振动应力云图及典型位置

不同声压级下单元 1674 位置的应力 PSD 图 4

表 3 危险点位置最大 Von Mises 应力								
单元号	温度/℃	143 dB	146 dB	149 dB	152 dB	155 dB	158 dB	161 dB
1674	800	13.9	19.6	27.7	39.1	55.2	78.0	110.2
	1000	14.5	20.5	29.0	41.4	57.9	81.8	115.5
1626	800	14.2	20.1	28.4	40.1	56.6	79.9	112.9
	1000	14.9	21.0	29.7	42.0	59.3	83.7	118.3

· 93 ·

了响应峰值。其中基频在热声激励响应中具有主导作 用,低阶固有频率处存在较大峰值,高阶频带范围内 的峰值较小,模态密度较高,这表明在抗声疲劳结构 设计中应当考虑响应谱的频率特征。

当高斯白噪声声压级由 143 dB 增加至 161 dB 时, 薄壁锥壳结构危险点位置处应力功率谱密度随着 声压级的升高而增加。温度在 800 ℃下, 其最大 Von Mises 应力幅值由 14.2 MPa 增加至 112.9 MPa; 温度 在 1000 ℃下,其最大 Von Mises 应力幅值由 14.9 MPa 增加至 118.3 MPa。

1.2.2 典型位置应力分布

给定 155 dB 声压级的高斯白噪声载荷,对比分 析薄壁锥壳结构上下孔间位置单元与小口边位置单 元的应力响应。其中,温度在 800 ℃下,相应位置单 元处的应力分布如图 5 所示,表 4 给出了薄壁锥壳结构各典型位置在基频处的最大 Von Mises 应力。

表 4 各典型位置最大 Von Mises 应力

温度/℃	典型单元最大 Von Mises 应力/MPa							
800	上下孔间	单元号	1674	1626	1632	1662	1638	1668
	位置	应力	55.2	56.6	47.4	35.0	35.9	43.6
	小口边	单元号	1980	1978	1962	1960	1961	1979
	位置	应力	1.6	4.9	9.9	3.7	1.0	0.4
1000	上下孔间	单元号	1674	1626	1632	1662	1638	1668
	位置	应力	57.9	59.3	51.3	41.9	43.0	46.2
	小口边	单元号	1980	1978	1962	1960	1961	1979
	位置	应力	1.3	3.8	11.7	3.5	0.8	0.3

分析发现,声压级一定时,薄壁锥壳结构上下 孔间位置和小口边位置的应力 PSD 随频率变化趋 势一致。小口边位置应力 PSD 幅值范围跨度较大, 上下孔间位置应力 PSD 幅值范围跨度较小(出现应 力集中)。上下孔间位置应力幅值相对较大,在温 度为 800 ℃时,应力最大值为 56.6 MPa;在温度为 1000 ℃时,应力最大值为 59.3 MPa。小口边位置 应力幅值相对较小,在温度为 800 ℃时,应力最大 值为 9.9 MPa;在温度为 1000 ℃时,应力最大值为 11.7 MPa。

1.2.3 不同温度下危险点位置应力分布

给定 155 dB 声压级的高斯白噪声载荷,研究不同热载荷,即 800 ℃与 1000 ℃条件下,薄壁锥壳结构危险点位置的应力响应,得到应力功率谱分布如图 6 所示。

分析发现,温度变化时,薄壁锥壳结构的应力功 率谱密度随频率变化的趋势不随温度变化,且基频在 热声激励响应中起主导作用。薄壁锥壳结构应力 PSD 幅值随着温度的升高而增大,由于不同温度场下薄壁 锥壳结构模态频率不同,1000 ℃较 800 ℃的应力 PSD 峰值左移,且幅值增加。

图 6 不同温度下危险位置应力 PSD

2 锥壳结构疲劳寿命计算与分析

2.1 不同声压级下危险点位置疲劳寿命

当声压级为 146~161 dB 时,基于高斯白噪声载 荷作用下薄壁锥壳结构的应力响应,计算并对比分析 不同声压级下薄壁锥壳结构疲劳寿命。在温度为 800℃条件下,薄壁锥壳结构危险点位置随温度变化 的雨流循环矩阵如图 7 所示,疲劳寿命随声压级变化 规律如图 8 所示,对应的计算结果见表 5。

分析发现,温度场相同时,热声载荷作用下,薄 壁锥壳结构围绕初始平衡位置振动,且应力循环的均 值近似为 0。随着声压级增大,应力循环块扩散,声 压级每增加 3 dB,循环块幅值增大,其疲劳寿命呈对 数趋势降低。其中,危险位置 1626 号单元在 1000 ℃ 和 161 dB 的共同作用下,疲劳寿命严重降低到 4.8×10³ s,即锥壳结构在孔边的危险位置可能在几个 小时左右将会发生疲劳失效。

2.2 不同温度下各典型位置疲劳寿命

选取 155 dB 声压级的高斯白噪声载荷,对比分 析薄壁锥壳结构上孔边与下孔边典型位置单元处的 疲劳寿命。155 dB 下薄壁锥壳结构各典型位置疲劳寿 命变化规律如图 9 所示,对应的计算结果见表 6。

由薄壁锥壳结构典型单元位置疲劳寿命计算结 果分析表明,温度相同时,声压级每增加3dB,其疲 劳寿命呈对数趋势降低。薄壁锥壳结构孔边位置因应 力最大,疲劳寿命最短,上下孔间位置比小口边位置 的疲劳寿命短。在考虑薄壁结构的抗疲劳寿命设计 时,特别是针对一些发动机的火焰筒而言,应该要特 别注重结构孔边位置的结构设计。

表 5 危险点位置疲劳寿命									
单元号	温度/℃	143 dB	146 dB	149 dB	152 dB	155 dB	158 dB	161 dB	
1674 8	800	5.4×10 ⁸	8.8×10 ⁷	1.3×10 ⁷	2.0×10^{6}	3.1×10 ⁵	4.6×10 ⁴	6.9×10 ³	
	1000	4.6×10 ⁸	5.3×10 ⁷	9.3×10 ⁶	1.6×10 ⁶	2.6×10 ⁵	3.8×10^4	5.6×10 ³	
1626	800	4.9×10 ⁸	7.0×10^{7}	1.1×10 ⁷	1.7×10^{6}	2.6×10 ⁵	3.8×10^4	6.1×10 ³	
	1000	3.8×10 ⁸	5.8×10^{7}	9.4×10 ⁶	1.3×10^{6}	2.1×10^{5}	3.2×10^{4}	4.8×10 ³	

			表 6	各典型位置疲	劳寿命			S
温度/℃				典型单元寿命	计算结果			
800	上下孔间	单元号	1674	1626	1632	1662	1638	1668
	位置	寿命	3.1×10 ⁵	2.6×10 ⁵	6.0×10 ⁵	2.9×10 ⁶	1.0×10^{6}	7.9×10 ⁵
	小口边	单元号	1980	1978	1962	1960	1961	1979
	位置	寿命	4.4×10 ¹¹	4.7×10^{10}	1.8×10 ⁹	2.6×10 ¹¹	9.3×10 ¹¹	3.9×10 ¹²
1000	上下孔间	单元号	1674	1626	1632	1662	1638	1668
	位置	寿命	2.6×10 ⁵	2.1×10^{5}	4.1×10 ⁵	9.5×10 ⁵	7.0×10^{5}	7.0×10^{5}
	小口边 位置	单元号	1980	1978	1962	1960	1961	1979
		寿命	5.4×10 ¹¹	1.2×10^{11}	9.1×10 ⁸	3.9×10 ¹¹	2.0×10^{12}	8.6×10 ¹²

3 结论

基于有效的热声动力学响应计算方法与疲劳寿 命预估模型,分别完成了金属薄壁锥壳结构的振动应 力的计算与疲劳寿命预估。研究表明,薄壁锥壳结构 的基频在屈曲前随温度增加而降低;屈曲后,在一定 温度范围内,基频增加。薄壁锥壳结构的应力集中主 要出现在孔边位置,基频在热声激励响应中起主导作 用,低阶固有频率处存在较大峰值,高阶频带范围内 的峰值较小,模态密度较高。在较高的温度载荷与声 载荷下,疲劳寿命只能维持在几个小时左右。这表明 在抗声疲劳结构设计中要考虑响应谱的频率结构,同 时针对一些发动机的火焰筒而言,应该要特别注重结 构孔边位置的结构设计。

参考文献:

- 陈予恕,张华彪. 航空发动机整机动力学研究进展与 展望[J]. 航空学报,2011,32(8):1371-1391.
- [2] 蒋玉洁, 菅利荣. 航空工业产业发展研究综述[J]. 郑州 航空工业管理学院学报, 2012, 30(3): 17-21.
- [3] BLEVINS R D, BOFILIOS D, HOLEHOUSE I, et al. Thermo-vibro-acoustic Loads and Fatigue of Hypersonic Flight Vehicle Structure[R]. Chula Vista: Goodrich Aerostructures Group, 2009
- [4] 沙云东,王建,赵奉同,等.高温环境下薄壁结构声疲 劳失效验证技术研究[J].装备环境工程,2016,13(5): 17-24.

- [5] SHA Yun-dong, LI Ji-yong, GAO Zhi-jun. Dynamic Response of Pre/Post Buckled Thin-Walled Structure Under Thermo-Acoustic Loading[J]. Applied Mechanics and Materials 2011, 80-81: 536-541.
- [6] SHA Yun-dong, WEI Jing, GAO Zhi-jun. Nonlinear Response with Snap-through and Fatigue Life Prediction for Panels to Thermo-acoustic Loadings[J]. Journal of Vibration and Control, 2014, 20(5): 679-697.
- [7] RIZZI S A, PRZEKOP A. "Estimation of Sonic Fatigue by Reduced-order Finite Element Based Analyses, " Structural Dynamics: Recent Advances[C]// Proceedings of the 9th International Conference. Southampton: [s.n.], 2006.
- [8] MAEKAWA S. On the Sonic Fatigue Life Estimation of Skin Structures at Room and Elevated Temperatures[J]. Journal of Sound and Vibration 1982, 80(1): 41-59.
- [9] CHABOCHE J L, LES-NE P M. A Nonlinear Continuous Fatigue Damage Model[J]. Fatigue & Fracture of Engineering Materials & Structures 1988, 11(1): 1-17.
- [10] CHILAKAMARRI K B, LEE J. Thermal-Acoustic Fatigue Damage Accumulation Model of Random S-Nap-Throughs[C]// The Proceeding of 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability. [s.l.]: [s.n.], 2000.
- [11] PRZEKOP A, RIZZI S A, SWEITZER K A. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting[J]. International Journal of Fatigue, 2008,30(9): 1579-1598.
- [12] 沙云东, 郭小鹏, 廖连芳, 等. 随机声载荷作用下的复

杂薄壁结构 Von Mises 应力概率分布研究[J]. 振动与冲击, 2011, 30(1): 137-141.

- [13] 郭小鹏, 沙云东, 柏树生, 等. 基于雨流计数法和功率 谱密度法的随机声疲劳应用研究[J]. 航空发动机, 2010, 36(5): 27-31.
- [14] 唐金, 沙云东, 郭小鹏. 基于局部应力应变场强法的薄 壁缺口结构随机声疲劳寿命估算[J]. 沈阳航空工业学 院学报, 2010, 27(3): 30-34.
- [15] 沙云东,王建,赵奉同,等. 热声激励下高温合金薄壁 结构振动响应试验验证与疲劳寿命预测[J]. 推进技术,

2017, 38(8): 1847-1856.

- [16] 沙云东,王建,赵奉同,等. 热声载荷下薄壁结构振动 响应试验验证与疲劳分析[J]. 航空动力学报,2017, 32(11): 2659-2671.
- [17] 沙云东,魏静,高志军,等. 热声激励下金属薄壁结构的随机疲劳寿命估算[J]. 振动与冲击,2013,32(10):
 162-166.
- [18] 王建,沙云东,赵奉同,等. 热声载荷下薄壁开孔结构
 振动响应与寿命预估[J]. 航空发动机, 2017, 43(3):
 24-31.