C/C 复合材料不同碳基体的纳米压痕行为研究

彭雪锋¹,戴宗妙¹,蒋建军²,张东生²

(1. 中国船舶重工集团公司第七一三研究所,郑州 450015;2.西北工业大学 机电学院,西安 710072)

摘要:目的 研究碳基体微观结构对材料整体性能的影响。方法 用酚醛浸渍-碳化、中温煤沥青浸渍-碳化、 甲烷为碳源前驱体,经化学气相沉积制备得到不同碳基体 C/C 复合材料。采用偏光显微镜对 C/C 复合材料 不同碳基体的显微结构进行观察分析,采用 XRD 和 Raman 光谱对 C/C 复合材料的树脂碳基体、沥青碳基 体和热解碳基体的微晶尺寸进行表征,以玻璃碳作为参比样品,通过纳米压痕测试不同碳基体试样的弹性 模量和硬度。结果 碳基体为热解碳和沥青碳的石墨微晶缺陷少,完整度较好,石墨化程度高。玻璃碳和树 脂碳基体中石墨微晶排列紊乱,有序度低,石墨化程度低。酚醛浸渍-碳化得到的树脂碳的微晶尺寸 L_c最小, 为 1.69 nm,弹性模量和硬度最大,分别为(23.17±0.54) GPa 和(3.26±0.10) GPa;光滑层热解碳和粗糙层热解 碳的弹性模量和硬度次之;沥青碳的微晶尺寸最大,L_c为 9.36 nm,而弹性模量和硬度最小,分别为 (12.53±2.29) GPa 和(0.72±0.14) GPa。结论 不同碳基体的 C/C 复合材料中,碳基体的石墨化度越高,微晶尺 寸越大,各向异性越显著,材料的弹性模量和硬度越低。 关键词:树脂碳;沥青碳;热解碳;纳米压痕

入谜间: 闪相极,仍自极,忽胜极,幻不应派

DOI: 10.7643/ issn.1672-9242.2019.10.011

中图分类号: TQ174 文献标识码: A

文章编号: 1672-9242(2019)10-0064-07

Nanoindentation Behavior of C/C Composites with the Different Carbon Matrices

PENG Xue-feng¹, DAI Zong-miao¹, JIANG Jian-jun², ZHANG Dong-sheng²
(1. Seventh Thirteen Institute of China Shipbuilding Industry Corporation, Zhengzhou 450015, China;
2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi' an 710072, China)

ABSTRACT: Objective To study the effect of carbon matrix microstructure on the overall properties of materials. **Methods** Different carbon matrix C/C composites were prepared by resin-derived, pitch-derived, rough laminar and smooth laminar pyrocarbon. The microstructure of C/C composites with the different carbon matrices was observed by polarized light microscopy; and the crystallite size of carbon matrices of resin-derived, pitch-derived, rough laminar and smooth laminar pyrocarbon was characterized by X-ray diffraction and Raman spectroscopy. With vitreous carbon for reference, the elasticity modulus and hardness of samples with different carbon matrices were tested through nanoindentation. **Results** Graphite crystallites of pyrocarbon and pitch-derived carbon had fewer defects, better integrity and higher degree of graphitization; graphite crystallite size L_c of carbon matrix by resin-derived was 1.69 nm, which was the smallest; but the modulus and hardness of that was the largest, separately (23.17±0.54) GPa and (3.26±0.10) GPa. The modulus and hardness of rough laminar and smooth laminar pyrocarbon was a litter smaller than that of resin derived carbon. The crystallite size L_c of the C/C-pitch composite was 9.36 nm, which was the largest; but the modulus and hardness was the smallest, about (12.53±2.29) GPa and (0.72±0.14) GPa. **Conclusion** In C/C composites of different carbon matrices, the higher the degree of graphitization, the larger the crystallite size, the more signifi-

收稿日期: 2019-05-21; 修订日期: 2019-06-17

作者简介:彭雪锋(1986-),男,博士,主要研究方向为复合材料的轻量化设计及应用。

cant the anisotropicy, and the smaller the modulus and the hardness.

KEY WORDS: resin derived carbon; pitch derived carbon; pyrocarbon; nanoindentation

碳纤维增强碳基体复合材料(Carbon fiber reinforced carbon matrices composite, C/C composite)具备 优异的高温力学性能、耐烧蚀性能,是作为高温结构 部件的最佳优选材料,也是目前碳材料领域研究的热 点。基于 C/C 复合材料优异的性能,其被公认为是目 前唯一可用于 2500 ℃以上高温的复合材料,在航空航 天、能源工业领域的高温热结构部件得到广泛应用^[1-5]。 现阶段研究得到的 C/C 复合材料的力学性能数据(碳 纤维的力学常数、碳基体的力学常数、C/C 复合材料 的力学常数)对实现其在不同环境下的安全应用极具 指导意义。目前,通过宏观力学方法研究得到的 C/C 复合材料在不同应用条件下的破坏模式很难清晰地 说明碳基体微观结构对材料整体性能的影响。因此, 为了保证 C/C 复合材料在实际应用中能持久稳定,对 其碳基体结构和性能的研究显得尤为必要。

纳米压痕技术是一种最简单的测试力学性质的 方法之一,在碳材料的性能表征中得到广泛的应用, 如玻璃碳、石墨、焦碳、金刚石和富勒烯膜等^[6-12]。 其中,对碳基体的力学性能已出现了大量的报道研究。

房金铭等[13]以甲烷为碳源气体,以缝合碳布为增 强体,采用化学气相沉积工艺制得了各向同性热解碳 和粗糙层热解碳,利用纳米压痕方法测试了各向同性 热解碳和粗糙层热解碳的弹性模量和硬度。各向同性 热解碳的弹性模量和硬度分别为 32.0 GPa 和 3.96 GPa; 粗糙层热解碳的弹性模量和硬度分别为 19.7 GPa 和 1.93 GPa。杨敏等^[14]采用纳米压痕法测试了 3D 正交编 织 C/C 复合材料纤维束内热解碳的弹性模量,为 30.08 GPa。P. Diss 等^[15]采用微米压痕和纳米压痕测试 了 HOPG、玻璃碳、热解碳薄膜和 C/C 复合材料的弹 性模量和硬度,发现被测材料在低载荷下(<100 mN)具 有完全的弹性行为,而在高载荷下萌生裂纹。研究认 为,碳材料的弹性模量受材料微观结构和受载区域材 料不均匀性的影响。D. Marx 和 L. Riester^[16]采用纳米 压痕方法测试了 C/C 复合材料、各向同性热解碳膜、 各向异性热解碳膜的近表面力学行为。发现三种材料 均表现出完全的弹性行为。C/C 复合材料树脂碳基体 的弹性模量为 15.24~21.04 GPa (受测试区域影响); 各向同性热解碳的弹性模量为(30.69±0.97) GPa; 各 向异性热解碳的弹性模量为(29.92±0.94) GPa。G. Hofmann 等^[17]以丙烷为碳源前驱体,以石墨棒为沉积 基体,利用流化床沉积工艺在 1350 ℃制得了光滑型 和粗糙型热解碳,以纳米压痕方法测试了两种热解碳 的弹性模量和硬度。光滑型热解碳的弹性模量和硬度 为(24.4±0.8) GPa 和(3.6±0.2) GPa; 粗糙型热解碳的弹 性模量和硬度为(8.8±1.9) GPa 和(0.9±0.2) GPa。 S. Ozcan 等^[18]研究了高织构热解碳基体 C/C 复合材

料和高织构热解碳/各向同性树脂碳基体 C/C 复合材 料的纳米压痕行为。两种不同碳基体的弹性模量受纤 维取向、基体取向、基体类型和热处理温度的影响, 其弹性模量分布在 12~35 GPa。当压痕深度为 300~400 nm 时,高织构热解碳基体和各向同性树脂 碳基体均发生一定程度的塑性变形。J. Gebert 等^[19] 以高织构热解碳作为研究对象,采用超声相位谱测试 获得了高织构热解碳的弹性常数 (C_{11} =40 GPa, C_{12} =20 GPa, C_{13} =13.1 GPa, C_{33} =18.2 GPa, C_{44} =1.8 GPa, E_1 =27.1 GPa, E_3 =12.8 GPa),表明高织构热解 碳的弹性常数具有横观各向同性特征。

采用纳米压痕技术得到的碳基体的弹性模量和 硬度,对 C/C 复合材料在不同环境下的应用具有一定 的指导意义。分析表明,目前的纳米压痕结果还存在 纳米压痕测试点少、结果离散性大等缺点,因此对不 同碳基体的微观结构分析不具全面性。文中以玻璃碳 作为参比对象,采用纳米压痕技术测试了四种碳基体 (沥青碳、树脂碳、粗糙层热解碳、光滑层热解碳) 的弹性模量和硬度,同时结合碳基体的微观结构对纳 米压痕测试结果进行了分析。

1 实验

1.1 试样的制备

实验选用具有不同碳基体的四种 C/C 复合材料 作为研究对象,并以玻璃碳作为参比对象。选用 2.5D 针刺碳毡作为增强体,分别通过酚醛浸渍-碳化、中温 煤沥青浸渍-碳化、甲烷为碳源前驱体,经化学气相沉 积制备得到不同碳基体 C/C 复合材料。C/C 复合材料 的增强体结构、制备工艺、密度及热处理状态见表 1。

从四种不同基体 C/C 复合材料块体材料上切取 试样,其尺寸为 10 mm×10 mm×10 mm。为了测试的 需要,先通过金相镶样机得到 φ30 mm×35 mm 的圆 柱试样,在自动抛磨机上将圆柱试样用金相砂纸逐目 研磨,进而进行抛光处理,抛光用氧化铝粉的粒径依 次为 0.5、0.25、0.05 μm^[5,12]。

1.2 方法

采用 ZESS AXIO 偏光显微镜 (Polarized light microscopy, PLM)观察 C/C 复合材料金相组织形貌。 采用 X' pert Pro 型 X 射线衍射仪(X-ray diffraction, XRD) 对玻璃碳及四种不同碳基体的 C/C 复合材料 进行晶体结构参数分析。由布拉格方程和 Scherrer 公式分别计算得出层间距 d_{002} 和表观微晶尺寸 L_c 。根据 Mering 和 Maire 公式计算得出石墨化度:

农 I 0/0 麦白树科的仅不依恋						
	密度/(g·cm ⁻³)	原料和纤维含量	工艺过程	热处理		
C/C-Resin	1.50	T700碳纤维;	酚醛树脂浸渍-碳化			
C/C-Pitch	1.85	2.5D 针刺碳毡;	中温煤沥青浸渍-碳化	1200 °C /2 h		
C/C-Rough laminar	1.76	纤维含量:~25%	化学气相沉积(甲烷为碳源前驱体)	1200 C/2 h		
C/C-Smooth laminar	1.76	(体积分数)	化学气相沉积(甲烷为碳源前驱体)			

€1 C/C 复合材料的技术状态

 $g = (0.3440 - d_{002})/(0.3440 - 0.3354)$

式中: 0.3440 nm 表示完全未石墨化乱层结构碳的层间距; 0.3354 nm 表示理想石墨晶体的层间距。

采用 Raman 光谱仪 Bruker G2. Ar 离子激光源分 析石墨化程度和石墨结构的完整程度。测试选用参 数:激光波长为 532 nm,激光能量为 12.5 mW,激 光斑点直径为 2 μm,物镜放大倍数为 100×。光谱范 围为 500~4000 cm⁻¹,光谱分辨率为 3 cm⁻¹,每次测 试累积次数为 20 次,曝光时间为 15 s。

采用美国 Aglient 公司的 G200 型纳米压痕仪对 试样的力学性能进行测试。选用 Berkovich 三棱锥压 头,载荷系统分辨率为 50 nN,位移分辨率为 0.01 nm, 以此保证能够精确得到碳基体在载荷过程作用下弹 性模量的变化。采用连续刚度测试方法(Continuous stiffness measurement, CSM),利用 Oliver 和 Pharr 方 法获得试样在加载过程中的弹性模量随测试深度的 变化,得出不同碳基体情况下的弹性模量响应^[20]。通 过纳米压痕测试获得载荷-深度曲线,测试的应变速 率为 0.5 s⁻¹,谐波位移和频率分别为 2 nm 和 45 Hz, 测试对象的泊松比假设为 0.30,并利用 Oliver-Pharr 模型计算得到材料的弹性模量-深度、硬度-深度曲 线^[5,12]。测试时将金相试样固定在样品台上,深度设 定为 1000 nm,随机选取 20 个测试点进行测试分析。

2 结果与讨论

2.1 PLM 观察

四种不同基体 C/C 复合材料的 PLM 金相照片如 图 1 所示。图 1a 为树脂碳基体试样,在偏光显微镜 下没有光学活性,表现为各向同性;图 1b 为沥青碳 基体试样,在纤维束间主要为小域型和镶嵌型组织, 仅有少量的域组织,而在纤维束内,沥青碳全部为镶 嵌型组织;图 1c 为光滑层热解碳基体试样,消光角为 15°;图 1d 为粗糙层热解碳基体试样,消光角为 20°。

a 光滑层C/C复合材料

d 树脂碳基C/C复合材料

图 1 C/C 复合材料 PLM 图像

2.2 XRD 分析

玻璃碳及不同碳基体 C/C 复合材料的 XRD 图谱如图 2 所示。可以看出,玻璃碳的(002)面衍射峰为包

型,表明玻璃碳为非晶态结构。C/C-Resin 复合材料的(002)面衍射峰强度较低,半高宽宽化明显,表明树脂碳基体的乱层结构明显,符合其非石墨化碳的特征。C/C-Pitch、C/C-Rough和 C/C-Smooth 复合材料

的(002)面衍射峰强度较高,半高宽较窄,表明沥青碳、 光滑层热解碳和粗糙层热解碳的微观结构更倾向于 石墨结构。由布拉格方程、Scherrer 公式计算得到玻 璃碳和 C/C 复合材料的 *d*₀₀₂ 和 *L*_c,根据 Mering 和 Maire 公式计算研究对象的石墨化度,结果见表 2。

由表 2 可以看出, 玻璃碳的 d_{002} 最大, L_c 最小; C/C-Resin 复合材料为树脂碳基体, 其层间距仍较大, L_c 较小; C/C-Pitch、C/C-Rough 和 C/C-Smooth 复合 材料的基体为可石墨化碳, 根据被测对象的微晶尺寸 L_c 对 其 进 行 排 序,为: C/C-Pitch>C/C-Rough> C/C-Smooth>C/C-Resin> Glassy Carbon。

图 2 C/C 复合材料和玻璃碳的 XRD 谱图

表 2 C/C 复合材料的 XRD 分析组	課
	기자

Composites	2 <i>θ</i> /(°)	FWHM/(°)	<i>d</i> ₀₀₂ /nm	$L_{\rm c}/{\rm nm}$	g/%
Glassy carbon	25.68	5.03	0.3470	1.69	—
C/C-Resin	25.77	1.95	0.3457	4.37	_
C/C-Pitch	26.11	0.91	0.3413	9.36	30.84
C/C-Rough laminar	26.10	0.98	0.3414	8.65	29.94
C/C-Smooth laminar	26.02	1.19	0.3425	7.14	17.20

2.3 Raman 分析

C/C 复合材料及玻璃碳的 Raman 光谱如图 3 所示,G 峰和 D 峰作为碳材料的特征峰出现。G 峰代表石墨平面结构内相邻碳原子在相反方向的振动情况,其强度可用于表征碳原子 sp²杂化键结构的完整程度。D 峰的出现与石墨微晶的取向度、结构缺陷多少、以及边缘的不饱和碳原子数有关。通常用石墨微晶长度(L_a)表征石墨化程度和石墨结构的完整程度^[5],其可通过相对强度比值(I_D/I_G)计算得出。

由玻璃碳和树脂碳基体的 Raman 光谱看出,其 D 峰和 G 峰宽化现象明显,相比热解碳基体和沥青碳 基体,其 D 峰强度较高。这说明玻璃碳和树脂碳基 体中石墨微晶排列紊乱,结构缺陷较多,石墨化程度 低。C/C-Rough 和 C/C-Smooth 的热解碳及 C/C-Pitch 中的沥青碳属易石墨化碳,其 D 峰强度较低,G 峰强 度高且锐化。这表明粗糙层热解碳、光滑层热解碳和 沥青碳基体中石墨微晶缺陷少, 完整度较好, 石墨化 程度高^[21-22]。玻璃碳、C/C-Resin、C/C-Smooth、 C/C-Rough 和 C/C-Pitch 的 D 峰与 G 峰的相对强度比 值 $I_{\rm D}/I_{\rm G}$ 分别为 1.38±0.04、1.80±0.10、1.11±0.03、 0.84±0.21 和 0.71±0.14。经计算得出, 对应的石墨微 晶 长 度 $L_{\rm a}$ 分别为 (3.53±0.11)、 (2.88±0.17)、 (4.45±0.12)、(5.89±0.49)、(7.01±0.63) nm。

2.4 载荷深度曲线

不同碳基体 C/C 复合材料和玻璃碳的纳米压痕 载荷-深度曲线如图 4 所示。玻璃碳、树脂碳、沥青 碳和热解碳基体均为典型的脆性材料。可以看出,随 着载荷的变化,试样表面发生弹塑性变形,且随着载 荷的增加,位移逐渐增大。卸载过程出现弹性变形的 回复过程^[5,12]。

由载荷-深度曲线分析可得出以下结论。

1)不同碳基体在最大压痕深度 h_{max} 下,对应的 最大载荷 p_{max} 不同: $p_{\text{glassy-carbon}} > p_{C/C-Resin} > p_{C/C-Smooth} > p_{C/C-Rough} > p_{C/C-Pitch}$,表明不同碳基体对压缩载荷的响应机制不同。

2)针对不同的碳基体,其卸载段曲线的斜率不同: S_{glassy-carbon}>S_{C/C-Resin}>S_{C/C-Smooth}>S_{C/C-Rough}>S_{C/C-Pitch}。 具体表现为四者的弹性模量不同: E_{glassy-carbon}> E_{C/C-Resin}>E_{C/C-Smooth}>E_{C/C-Rough}>E_{C/C-Pitch}。

3)不同碳基体的压入功恢复率不同: $\eta_{glassy-carbon}$ 为 91.85%、 $\eta_{C/C-Resin}$ 为 85.97%、 $\eta_{C/C-Smooth}$ 为 78.86%、 $\eta_{C/C-Rough}$ 为 61.00%、 $\eta_{C/C-Pitch}$ 为 43.41%,压入功恢复 率越低,表明材料中由于残余压痕存在导致无法释放 的能量越高。

根据 XRD 和 Raman 分析结果, 玻璃碳、树脂 碳、沥青碳和两种热解碳主要由小于 10 nm 的石墨

微晶组成^[23-24]:沿石墨微晶平面方向,石墨微晶择 优取向,结合较强;沿石墨微晶层间方向,微晶之 间结合较弱。纳米压痕测试时,Berkovich压头与碳 基体测试平面的关系如图 5a所示。碳基体(垂直于 石墨微晶各向同性面)在受压缩载荷作用时的变形 如图 5b 所示。可以看出,碳基体受压缩载荷时,碳 基体内部由载荷压力点向两侧逐渐受力变形。对其 变形机理分析如图 5c 所示,主要表现为石墨微晶 中石墨烯片层的剪切和折裂。通过分析可知,折裂 主要发生在石墨微晶内部及微晶的边界处,但是片 层内的共价键仍然保持完整,因此,认为折裂造成 的变形是完全弹性的。石墨烯片层的剪切与石墨烯 片层间 van der Waals 键的断裂有关^[5,12],由于键的 断裂是不可逆的,由剪切造成的变形在本质上是塑 性的。

沥青碳基体的石墨微晶尺寸较大,各向异性程度 显著,石墨微晶面内,原子共价键结合强度高,在压 缩载荷下发生折裂,产生完全的弹性变形。石墨微晶 片层之间的 van der Waals 键的结合力较弱,在剪切 载荷作用下,发生较长距离的滑移,残余塑性变形 大。树脂碳基体的石墨微晶尺寸较小,微晶近似各 向同性取向,石墨微晶片内的键结合较强,抵抗压 缩变形和剪切变形的能力更强,主要表现为弹性变 形。粗糙层热解碳纳米压痕行为与沥青碳基体一致, 而光滑层热解碳介于树脂碳和粗糙层热解碳之间。在 图 4 中,纳米压痕载荷-深度曲线上表现为 C/C-Pitch 的残余变形大,压入功恢复率低(43.41%),弹性 模量小; C/C-Resin 的残余变形小,压入功恢复率高 (91.85%),弹性模量大;粗糙层热解碳和光滑层 热解碳居中。

2.5 模量-深度和硬度深度曲线

不同基体 C/C 复合材料和玻璃碳的模量-深度曲 线和硬度-深度曲线如图 6 所示。在压入深度为小于 100 nm 时,弹性模量和硬度较不稳定,这主要是由 试样表面粗糙度和研磨抛光导致的表面硬化引起的。 压入深度超过 100 nm 后,测试曲线比较稳定,其弹 性模量和硬度随深度增加而趋于稳定。因此,通常对 100~1000 nm之间的数据取平均值作为测试所得的弹 性模量和硬度值^[5,12]。不同基体 C/C 复合材料和玻璃 碳的弹性模量和硬度的平均值和标准偏差见图 6 和 表 3。玻璃碳的弹性模量和硬度最大,为(24.77±0.29) GPa 和(3.51±0.07) GPa; 沥青碳的弹性模量和硬度最 小,为(12.53±2.29) GPa 和(0.72±0.14) GPa; 树脂碳从 微观结构上类似于玻璃碳,因此其弹性模量 (23.17±0.54) GPa 和硬度(3.26±0.10) GPa 与玻璃碳的 基本相同;粗糙层热解碳微观结构与沥青碳相似,其 弹性模量和硬度与沥青碳差别很小;光滑层热解碳的 弹性模量和硬度为于树脂碳和粗糙层热解碳和光滑层 热解碳的弹性模量和硬度的测试结果与文献报道基 本一致^[9,15-16,18,25-27]。

结合玻璃碳、树脂碳、光滑层热解碳、粗糙层热 解碳和沥青碳的 XRD 和 Raman 分析,可以看出:材 料的石墨化度越高,微晶尺寸越大(*L*_c和 *L*_a),各向 异性越显著(表现为石墨化度高),则材料的弹性模 量和硬度越低,而且弹性模量和硬度测试结果的离散 性越大;材料的微晶尺寸小,各向异性弱,则材料的 弹性模量和硬度高,且测试结果的离散性小。

表:	3 C/C	复合材料	不同基体的	的弹性模量	和硬度测试	结果
					1	

	Elastic modulus/GPa			Hardness		
	Mean	s. d.	c.v.	Mean	s.d.	c.v.
Glassy carbon	24.77	0.29	1.18	3.51	0.07	2.17
Pitch derived	12.53	2.29	14.96	0.72	0.14	17.87
Resin derived	23.17	0.54	7.88	3.26	0.10	8.47
Rough laminar	15.31	1.82	12.02	0.77	0.15	21.06
Smooth laminar	21.67	1.37	8.42	2.02	0.34	16.95

3 结论

1) C/C-Pitch、C/C-Rough 和 C/C-Smooth 复合材 料的基体为可石墨化碳,其微晶尺寸 *L*_c分别为 9.36、 8.65、7.16 nm,石墨化度分别为 17.20%、29.94%、 30.84%。C/C-Smooth、C/C-Rough 和 C/C-Pitch 对应 的石墨微晶长度 *L*_a分别为(4.45±0.12)、(5.89±0.49)、 (7.01±0.63) nm。

2) C/C 复合材料沥青碳基体的纳米压痕弹性模 量和硬度分别为(12.53±2.29) GPa 和(0.72±0.14) GPa, C/C 复合材料树脂碳基体分别为(23.17±0.54) GPa 和 (3.26±0.10) GPa。C/C 复合材料粗糙层热解碳基体的 微晶尺寸、弹性模量和硬度与沥青碳相似,而光滑层 热解碳的纳米压痕行为介于树脂碳和粗糙层热解碳 之间。

3) C/C 复合材料的碳基体的石墨化度越高,微 晶尺寸越大(L_c和L_a),各向异性越显著(表现为石 墨化度高),则材料的弹性模量和硬度越低,而且弹 性模量和硬度测试结果的离散性越大。

参考文献:

- 李贺军,薛晖,付前刚,等. C/C 复合材料高温抗氧化 涂层的研究进展与展望[J]. 无机材料学报, 2010, 25(4): 337-343.
- [2] JIN X C, FAN X L, LU C S, et al. Advances in Oxidation and Ablation Resistance of High and Ultra-high Tem-

perature Ceramics Modified or Coated Carbon/Carbon Composites[J]. Journal of the European Ceramic Society, 2018, 38(1): 1-28.

- [3] SUN J J, LI H J, HAN L Y, et al. Enhancing both Strength and Toughness of Carbon/Carbon Composites by Heat-treated Interface Modification[J]. Journal of Materials Science & Technology, 2019, 35(3): 383-393.
- [4] 李艳,崔红,张华坤,等.热梯度 CVI 制备大尺寸 C/C 复合材料的致密化行为[J].无机材料学报,2015,30(2): 153-158.
- [5] 嵇阿琳,李贺军,崔红,等.不同预制体结构 C/C 复合 材料轴向热力学性能分析[J].无机材料学报,2010, 25(9):994-998.
- [6] 张东生,李新涛,夏汇浩,等.三种不同碳纤维的纳米 压痕行为[J].复合材料学报,2017,34(6):1341-1346.
- [7] LEMOINE P, ZHAO J F, QUINN J P, et al. Nanoindentation and Scratch Resistance Testing on Magnetic Tape Heads Coated with Ultra-thin Amorphous Carbon Layers[J]. Wear, 2000, 244(1-2): 79-84.
- [8] FIELD S, SWAIN M V. The Indentation Characterization of the Mechanical Properties of Various Carbon Materials: Glassy Carbon, Coke and Pyrolytic Carbon[J]. Carbon, 1996, 34(11): 1357-1366.
- [9] RICHTER A, RIES R, SMITH R, et al. Nanoindentation of Diamond, Graphite and Fullerene Films[J]. Diamond and Related Materials, 2000, 9(2): 170-184.
- [10] FUJISAWA N, ZHANG T F, LI O L, et al. Substrate-independent Stress-Strain Behavior of Diamond-like Carbon thin Films by Nanoindentation with a Spherical Tip[J]. Journal of Materials Research, 2018, 33(6): 699-708.

- [11] HUO Z L, GUO Z R, LENG J T, et al. Nanoindentation of Circular Multilayer Graphene Allotropes[J]. Science China-technological Sciences, 2019, 62(2): 269-275.
- [12] 张东生,李新涛,夏汇浩,等.纳米压痕技术表征 T800 碳纤维的弹性模量和硬度[J]. 宇航材料工艺,2017(4): 79-85.
- [13] 房金铭, 冯志海, 张中伟. 热解碳微观结构调控与纳米 压痕测试[J]. 装备环境工程, 2016, 13(3): 82-87.
- [14] 杨敏,孙晋良,任慕苏,等. 热解碳的纳米硬度及弹性模量[J]. 上海大学学报(自然科学版), 2008, 14(5): 541-545.
- [15] DISS P, LAMON J, CARPERTIER L, et al. Sharp Indentation Behavior of Carbon/Carbon Composites and Varieties of Carbon[J]. Carbon, 2002, 40(14): 2567-2579.
- [16] MARX D T, RIESTER L. Mechanical Properties of Carbon-Carbon Composite Components Determined Using Nanoindentation[J]. Carbon, 1999, 37(11): 1679-1684.
- [17] HOFMANN G, WIEDENMEIER M, FREUND M, et al. An Investigation of the Relationship between Position within Coater and Pyrolytic Carbon Characteristics Using Nanoindentation[J]. Carbon, 2000, 38(5): 645-653.
- [18] OZCAN S, TEZCAN J, FILIP P. Microstructure and Elastic Properties of Individual Components of C/C Composites[J]. Carbon, 2009, 47(15):3403-3414.
- [19] GEBERT J M, REZNIK B, PIAT R, et al. Elastic Constants of High-texture Pyrolytic Carbon Measured by Ultrasound Phase Spectroscopy[J]. Carbon, 2010, 48(12):

3647-3650.

- [20] OLIVER W C, PHARR G M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments[J]. Journal of Materials Research, 1992, 7(6): 564-1583.
- [21] TUINGSTRA F, KOENING J L. Raman Spectrum of Graphite[J]. Journal of Chenical Physics, 1970, 53(3): 1126-1130.
- [22] 张福勤,黄启忠,黄伯云,等. C/C 复合材料石墨化度 的喇曼光谱表征[J]. 无机材料学报,2003,18(2): 361-366.
- [23] HUSON M G, CHURCH J S, KAFI A A, et al. Heterogeneity of Carbon Fiber[J]. Carbon, 2014, 68: 240-249.
- [24] CRAWFORD D, JOHNSON D J. High Resolution Electron Microscopy of High Modulus Carbon Fibers[J]. Journal of Microscopy, 1971, 94(1): 51-62.
- [25] BARSOUM M W, MURUGAIAH A, KALIDINDI S R, et al. Kink Bands, Nonlinear Elasticity and Nanoindentations in Graphite[J]. Carbon, 2004, 42(8-9): 1435-1445.
- [26] GROSS T S, TIMOSHCHUK N, TSUKROV I, et al. Unique Nanoindentation Damage for Highly Textured Pyrolytic Carbon[J]. Carbon, 2013, 60: 273-279.
- [27] SARKAR S, DEY A, DAS P K, et al. Evaluation of Micromechanical Properties of Carbon/Carbon and Carbon/Carbon-silicon Carbide Composites at Ultralow Load[J]. International Journal of Applied Ceramic Technology, 2011, 8(2): 282-297.