杨文慧,牟仁德.热处理温度对热障涂层微观形貌及元素互扩散的影响[J].装备环境工程,2019,16(1):7-12. YANG Wen-hui,MU Ren-de.Effects of Heat Treatment Temperature on Microstructure and Interdiffusion Behavior of Thermal Barrier Coatings[J].Equipment Environmental Engineering,2019,16(1):7-12.
热处理温度对热障涂层微观形貌及元素互扩散的影响
Effects of Heat Treatment Temperature on Microstructure and Interdiffusion Behavior of Thermal Barrier Coatings
投稿时间:2018-10-31  修订日期:2019-01-25
DOI:10.7643/ issn.1672-9242.2019.01.002
中文关键词:  热障涂层  热处理  互扩散  二次反应区
英文关键词:thermal barrier coating  heat treatment  interdiffusion  second reaction zone
基金项目:
作者单位
杨文慧 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京 100095 
牟仁德 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京 100095 
AuthorInstitution
YANG Wen-hui Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 
MU Ren-de Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高热障涂层抗氧化性能,并减小二次反应区的形成。方法 采用真空电弧离子镀技术在二代单晶高温合金DD32表面制备NiCoCrAlYHf(HY5)金属粘结层,分别在870 ℃及1000 ℃下进行真空扩散处理,利用电子束物理气相沉积(EB-PVD)技术制备氧化钇部分稳定氧化锆(YSZ)陶瓷层。采用扫描电子显微镜(SEM)、电子探针(EPMA)以及能谱(EDS)等测试方法,研究高温循环氧化过程中热障涂层的微观形貌、成分及扩散机制,同时计算了1、125 h氧化时间下Al元素互扩散系数。结果 经过1000 ℃热循环、1000 ℃热处理的涂层氧化质量增量的绝对值较小,氧化速率常数为7.21×10?4,抗循环氧化性能较好。1100 ℃热处理试样,从涂层表面到基体方向Ni、Al、Cr等元素分布都比较均匀,在涂层与基体界面处,元素含量变化较为平滑。870 ℃热处理试样,Ni等元素质量分数分布不均,在涂层与基体界面处元素含量陡然变化,元素均质化程度低。Al元素扩散系数随着浓度的增加而增大,随着氧化时间的延长,粘结层与高温合金之间的元素扩散程度加剧,Al元素扩散系数减小。经过125 h循环氧化,粘结层/基体界面出现互扩散区,互扩散区局部区域富Cr,Al含量低。循环氧化250 h后,热障涂层试样扩散区下方有拓扑密堆相TCP析出,形成二次反应区SRZ。真空扩散温度为870 ℃的试样,二次反应区更加明显。结论 金属粘结层在1000 ℃下进行真空热处理可以有效提高涂层的抗氧化性能。涂层内部元素均质化程度高,Al元素扩散速率慢。同时,扩散区宽度较小,二次反应区不明显。
英文摘要:
      Objective To improve the oxidation resistance and decrease the second reaction zone (SRZ) of thermal barrier coating (TBC). Methods The bond coating of HY5 (NiCoCrAlYHf) was prepared by vacuum arc ion plating on second genera-tion single crystal super-alloy DD32 to carry out vacuum diffusion treatment at 870 ℃ and 1000 ℃ respectively. And then YSZ was deposited on the bond coating by EB-PVD. Microstructure, composition and diffusion mechanism of the thermal barrier coating during high temperature cyclic oxidation were studied through test with SEM, EDS and EPMA. The inter diffusion co-efficient of Al element in 1, 125 h of oxidation was calculated. Results After thermal circulation at 1100 ℃, the absolute value of oxidation mass increment of the coating after thermal treatment at 1000 ℃ was small; the oxidation rate constant was 7.21× 10?4; and the cyclic oxidation resistance was good. For samples after thermal treatment at 1000 ℃, the distribution of Ni, Al, Cr and other elements was relatively uniform from the surface of the coating to the direction of the substrate; and the change of element content was relatively smooth at the interface between the coating and the substrate. For samples after thermal treatment at 870 ℃, the mass fraction of Ni and other elements was unevenly distributed; the element content changed abruptly at the interface between the coating and the substrate, resulting in a low degree of element homogenization. The diffusion coefficient of Al element increased with the increase of concentration. With the extension of oxidation time, the element diffusion between the bonding layer and the superalloy increased and the diffusion coefficient of Al element decreased. After 125 h of cyclic oxidation, the bonding coating / substrate interface had interdiffusion region. Local region of interdiffusion region was rich in Cr, but the Al content was low. After 250 h of cyclic oxidation, topologically dense phase TCP precipitated under the diffusion region of the thermal barrier coating sample, forming a secondary reaction zone (SRZ). For samples with vacuum diffusion temperature of 870 ℃, the secondary reaction zone was more obvious. Conclusion Vacuum heat treatment of metal bond coating at 1000 ℃ can effectively improve the oxidation resistance of the coating. The homogenization degree of elements in the coating is high, and the diffusion of Al element is slow. At the same time, the width of the diffusion region is small and the secondary reaction zone is not obvious.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第11929997位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号