王炳钦,夏登辉,李卓玄,纪灏天,曹艳辉,雍兴跃,周欢,许志雄.海水管系中异种金属管道耦接腐蚀模拟研究[J].装备环境工程,2023,20(4):64-71. WANG Bing-qin,XIA Deng-hui,LI Zhuo-xuan,JI Hao-tian,CAO Yan-hui,YONG Xing-yue,ZHOU Huan,XU Zhi-xiong.Simulation on Corrosion of Dissimilar Metallic Coupled Pipes in Seawater Pipe System[J].Equipment Environmental Engineering,2023,20(4):64-71.
海水管系中异种金属管道耦接腐蚀模拟研究
Simulation on Corrosion of Dissimilar Metallic Coupled Pipes in Seawater Pipe System
  
DOI:10.7643/issn.1672-9242.2023.04.009
中文关键词:  铜合金  海水管系  异种金属耦接管道  电偶腐蚀  电化学  数值模拟中图分类号:TG172.5 文献标识码:A 文章编号:1672-9242(2023)04-0064-08
英文关键词:copper alloy  seawater pipe system  dissimilar metal coupled pipes  galvanic corrosion  electrochemistry  numerical simulation
基金项目:
作者单位
王炳钦 北京化工大学 有机无机复合材料国家重点实验室,北京 100029 
夏登辉 北京化工大学 有机无机复合材料国家重点实验室,北京 100029 
李卓玄 北京化工大学 有机无机复合材料国家重点实验室,北京 100029 
纪灏天 北京化工大学 有机无机复合材料国家重点实验室,北京 100029 
曹艳辉 北京化工大学 有机无机复合材料国家重点实验室,北京 100029 
雍兴跃 北京化工大学 有机无机复合材料国家重点实验室,北京 100029 
周欢 中国舰船研究设计中心,武汉 430064 
许志雄 中国舰船研究设计中心,武汉 430064 
AuthorInstitution
WANG Bing-qin State Key Laboratory of Organic-inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China 
XIA Deng-hui State Key Laboratory of Organic-inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China 
LI Zhuo-xuan State Key Laboratory of Organic-inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China 
JI Hao-tian State Key Laboratory of Organic-inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China 
CAO Yan-hui State Key Laboratory of Organic-inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China 
YONG Xing-yue State Key Laboratory of Organic-inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China 
ZHOU Huan China Ship Development and Design Center, Wuhan 430064, China 
XU Zhi-xiong China Ship Development and Design Center, Wuhan 430064, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究船舶海水管系中常见异种金属管道之间的电偶腐蚀问题。方法 使用COMSOL Multiphysics软件,模拟研究紫铜(TP2Y)/#20钢、B10铜合金/921A钢、921A钢/锡青铜(XQT)耦接管道在3.5% NaCl溶液中管道内表面的电位、电流密度分布规律及耦接60 d后的电偶腐蚀状况。结果 异种金属管道耦接情况时,紫铜、B10铜以及锡青铜管道作为电偶腐蚀偶对中的阴极而受到保护,20号钢和921A钢管道为阳极,发生电偶腐蚀。当紫铜/20号钢管道耦接时,紫铜管道受保护长度距离耦接处约425 mm,而20号钢管道的电偶腐蚀长度距法兰耦接处约500 mm;当B10铜合金/921A 钢耦接时,B10铜合金管道受保护长度约500 mm,921A 钢管道受到电偶腐蚀的长度约780 mm;当921A 钢/锡青铜管道耦接时,锡青铜管道受保护长度约620 mm,而921A 钢管道电偶腐蚀长度约820 mm。模拟结果还表明,当耦接时间达60 d后,紫铜与20号钢管道耦接时,20号钢管道内壁靠近处的腐蚀深度最大约为5.57 μm;B10与921A钢管道耦接时,921A钢管道内壁的腐蚀深度达到8.31 μm;锡青铜与921A钢管道耦接时,921A钢管道内壁的腐蚀深度最大约为8.48 μm。结论 异种金属管道的电偶腐蚀与异种金属之间的电位差密切相关。同时,在电偶腐蚀过程中,还易造成管道电位宏观分布的不均匀性,最终可能形成宏观电位差导致的腐蚀问题。
英文摘要:
      The work aims to study the galvanic corrosion of dissimilar metal pipes in marine seawater piping systems. Software COMSOL Multiphysics was used to simulate the potential and current density distribution on surface of coupled pipes (red copper (TP2Y) /#20 steel, B10 copper alloy/921A steel, 921A /tin-bronze (XQT)) in a 3.5 wt.% NaCl solution and the galvanic corrosion 60 days after pipe coupling. The results showed that when they were coupled together, the red copper, B10 and tin bronze pipes were be protected as the cathode, but the #20 steel and 921A steel pipes would be eroded as the anode. For coupling of red copper and #20 steel pipes, the protection length of red copper pipes was 425 mm from the coupling, and the galvanic corrosion length of #20 steel pipes was about 500 mm from the flange. For coupling of B10 copper alloy and 921A steel pipes, the protection length of B10 copper alloy pipes was about 500 mm, and the galvanic corrosion length of 921A steel pipes was about 780 mm. For coupling of 921A steel and tin bronze pipes, the protection length of tin bronze pipes was about 620 mm, and the galvanic corrosion length of 921A steel pipes was about 820 mm. In addition, the simulation results also showed that after coupling for 60 days, the maximum corrosion depth near the inner wall of #20 steel pipe was 5.57 μm. Meanwhile, for coupling of B10 alloy and 921A steel pipes, the maximum corrosion depth near the inner wall of 921A steel pipes was 8.31 μm. Then, for coupling of tin bronze and 921A steel pipes, the maximum corrosion depth near the inner wall of 921A steel pipes was 8.48 μm. It is indicated that galvanic corrosion of dissimilar metal pipes was closely related to the potential difference. Meanwhile, during galvanic corrosion, it is easy to cause the nonuniform macroscopic distribution of pipe potential and induce the corrosion caused by macroscopic potential difference.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第12048426位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号