目的 针对某小口径自动步枪低温寿命试验过程中出现的击针断裂现象,开展击针冲击疲劳失效分析,并提出击针设计建议。方法 通过对低温寿命试验过程中出现的断裂失效击针进行宏观观察与微观分析,同时对击针材料进行常温与低温条件下的性能测试实验,明确击针零件及对应材料在低温环境下的失效机理及性能变化规律。结果 性能测试实验结果表明,击针材料在低温环境下具有更高的抗拉强度以及低周疲劳寿命,其冲击韧性有明显降低。通过对击针表面及断口的观察,发现击针的尖部表面比较粗糙,可见规则平行的环向沟痕。击针材料在低温环境下的抗拉强度与拉压低周疲劳寿命呈正相关,其冲击韧性较常温降低29.3%,且与实际工况的冲击疲劳寿命呈正相关。同时击针零件表面加工精度较低,存在应力集中,加速裂纹扩展,影响了击针寿命。结论 针对需要长期在低温环境下服役的枪械,其击针材料建议选用在保证常温强度的情况下,具有较高的低温冲击韧性的材料,以保证枪械的击发可靠性。
Abstract
The work aims to investigate the fracture failure of firing pins observed during low-temperature endurance testing of small-caliber automatic rifles, conduct impact fatigue failure analysis, and propose design improvements for firing pins. Macroscopic and microscopic examinations were performed on fractured firing pins from low-temperature testing. Additionally, mechanical property tests were conducted on the firing pin material under both ambient and low-temperature conditions to determine the failure mechanisms and performance characteristics in low-temperature environments. Material testing revealed that the firing pins exhibited higher tensile strength and improved low-cycle fatigue life at low temperature, while its impact toughness decreased significantly. Surface and fracture analysis showed that the firing pin tip had a rough surface with distinct parallel circumferential grooves. The study demonstrated a positive correlation between the firing pin material's tensile strength and low-cycle fatigue life under low-temperature conditions. However, impact toughness decreased by 29.3 % compared with that under ambient temperature, while maintaining a positive correlation with impact fatigue life. The observed surface roughness and machining imperfections created stress concentrations that accelerated crack propagation, reducing service life. In conclusion, for firearms operating in sustained low-temperature environments, it is recommended to select firing pin materials that maintain adequate ambient-temperature strength while exhibiting superior low-temperature impact toughness to ensure reliable ignition performance.
关键词
低温环境 /
枪械零件 /
击针断裂 /
冲击疲劳 /
材料性能 /
失效分析
Key words
low temperature environment /
firearm parts /
fractured firing pin /
impact fatigue /
material properties /
failure analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KOGA N, NOGUCHI M, WATANABE C.Low-temperature Tensile Properties, Deformation and Fracture Behaviors in the Ferrite and Austenite Duplex Stainless Steel with Various Grain Sizes[J]. Materials Science and Engineering: A, 2023, 880: 145354.
[2] YAN J B, GENG Y T, XIE P, et al.Low-temperature Mechanical Properties of Stainless Steel 316L: Tests and Constitutive Models[J]. Construction and Building Materials, 2022, 343: 128122.
[3] YAN J B, FENG J Y, LUO Y B, et al.Compression Behaviour of Stainless-steel Stub Square Tubular Columns at Cold-region Low Temperatures[J]. Journal of Constructional Steel Research, 2021, 187: 106984.
[4] GARDNER L, TALJA A, BADDOO N R.Structural Design of High-strength Austenitic Stainless Steel[J]. Thin-walled Structures, 2006, 44(5): 517-528.
[5] GARION C, SKOCZEŃ B, SGOBBA S.Constitutive Modelling and Identification of Parameters of the Plastic Strain-induced Martensitic Transformation in 316L Stainless Steel at Cryogenic Temperatures[J]. International Journal of Plasticity, 2006, 22(7): 1234-1264.
[6] WANG Y H, WANG R, TIAN Y W, et al.Impact Performance of Hollow Steel Tubes under Low Temperatures[J]. Journal of Constructional Steel Research, 2025, 229: 109534.
[7] LIU Q F, YAN J B, LIN X C.Axial Compression Behavior of Q690E/Q960E High-strength Steel Tubes at Low Temperatures[J]. Journal of Constructional Steel Research, 2023, 210: 108091.
[8] YAN J B, LUO Y L, LIN X C, et al.Effects of the Arctic Low Temperature on Mechanical Properties of Q690 and Q960 High-strength Steels[J]. Construction and Building Materials, 2021, 300: 124022.
[9] CHEN M H, YAN J B.Stainless-steel Square Hollow Tubes Subjected to Low-temperature Eccentric Compression Loads[J]. Journal of Constructional Steel Research, 2024, 212: 108218.
[10] QIAO K Q, LIU Z J, SUN Z Y, et al.Effects of Low Temperature Overload and Cycling Temperature on Fatigue Crack Growth Behavior of Ship Steels in Arctic Environments[J]. Ocean Engineering, 2023, 288: 116090.
[11] LIANG H, ZHAN R, WANG D P, et al.Fatigue Crack Growth under Overload/Underload in Different Strength Structural Steels[J]. Journal of Constructional Steel Research, 2022, 192: 107213.
[12] TONG L W, NIU L C, REN Z Z, et al.Experimental Research on Fatigue Performance of High-strength Structural Steel Series[J]. Journal of Constructional Steel Research, 2021, 183: 106743.
[13] WANG X, ZHU Z D, WANG H J, et al.Characterization of Eccentric Internal Crack Expansion in Brittle Materials at Low Temperature[J]. Theoretical and Applied Fracture Mechanics, 2025, 138: 104895.
[14] LI X Y, WANG H J, TANG L, et al.3D Internal Crack Propagation in Brittle Solids under Non-Uniform Temperature Field: Experimental and Numerical Simulation[J]. Engineering Fracture Mechanics, 2024, 307: 110305.
[15] 李奇聪, 司俊, 金鑫, 等. 316L不锈钢低温力学性能研究与寿命预测[J]. 热加工工艺, 2023, 52(4): 27-31.
LI Q C, SI J, JIN X, et al.Study on Low-temperature Mechanical Properties and Life Prediction of 316L Stainless Steel[J]. Hot Working Technology, 2023, 52(4): 27-31.
[16] 宋月鹏, 刘自平, 陈义祥, 等. 机械研磨对316L不锈钢表面及其低温渗铝层性能的影响[J]. 材料热处理学报, 2016, 37(6): 204-209.
SONG Y P, LIU Z P, CHEN Y X, et al.Effect of Surface Mechanical Attrition on Surface and Properties of Low Temperature Aluminized Layer of 316L Stainless Steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(6): 204-209.
[17] 史术华, 高擎, 钱亚军. 低温回火对低碳马氏体超高强钢组织及力学性能的影响[J]. 矿冶工程, 2023, 43(6): 174-178.
SHI S H, GAO Q, QIAN Y J.Effect of Low-Temperature Tempering on Microstructure and Mechanical Properties of Low-carbon Martenstic Ultra-High Strength Steel[J]. Mining and Metallurgical Engineering, 2023, 43(6): 174-178.
[18] 汤隽劼, 喻异双, 胡斌, 等. 增材制造高强钢中的马氏体组织与马氏体相变[J]. 钢铁, 2024, 59(6): 83-93.
TANG J J, YU Y S, HU B, et al.Martensite Microstructure and Martensitic Transformation of Additive Manufacturing High-Strength Steel[J]. Iron & Steel, 2024, 59(6): 83-93.
[19] 高杰, 鞠晓臣, 柳恒, 等. 低温环境下Q690高强钢断裂韧性参数的试验与数值研究[J]. 中国造船, 2023, 64(3): 68-79.
GAO J, JU X C, LIU H, et al.Experimental and Numerical Investigation of Fracture Toughness Parameters of Q690 High-Strength Steel for Application in Harsh Environment[J]. Shipbuilding of China, 2023, 64(3): 68-79.
[20] 李鹤飞, 张鹏, 张哲峰. 高强钢断裂韧性与疲劳裂纹扩展评价方法研究进展[J]. 机械工程学报, 2023, 59(16): 18-31.
LI H F, ZHANG P, ZHANG Z F.Research Progress on Evaluation Methods of Fracture Toughness and Fatigue Crack Growth in High-Strength Steel[J]. Journal of Mechanical Engineering, 2023, 59(16): 18-31.
[21] 郭强, 迟克刚. 30CrMnSiA钢结构件低温断裂失效分析[J]. 金属热处理, 2023, 48(8): 276-280.
GUO Q, CHI K G.Low-temperature Fracture Failure Analysis of 30CrMnSiA Steel Structural Part[J]. Heat Treatment of Metals, 2023, 48(8): 276-280.
[22] 刘泉兵, 刘宗德, 郭胜洋, 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
LIU Q B, LIU Z D, GUO S Y, et al.Galvanic Corrosion Behavior of 5083 Al-Alloy and 30CrMnSiA Steel in NaCl Solutions[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 883-891.
[23] 张永新, 范昌增, 许泽建, 等. 球墨铸铁在低温及冲击载荷下的韧脆转变行为[J/OL]. 爆炸与冲击, 2025: 1-13(2024-03-29). https://link.cnki.net/urlid/51.1148.O3.20240328.1523.014.
ZHANG Y X, FAN C Z, XU Z J, et al. Ductile-brittle Transition Behavior of Nodular Cast Iron under Low Temperature and Impact Loading[J]. Explosion and Shock Waves, 2025: 1-13(2024-03-29). https://link.cnki.net/urlid/51.1148.O3.20240328.1523.014.
[24] 王杰, 韩传龙, 王睿泱, 等. 含铜奥氏体不锈钢低温环境下成形性能及微观组织的研究[J]. 精密成形工程, 2025, 17(1): 87-96.
WANG J, HAN C L, WANG R Y, et al.Forming Properties and Microstructure of Copper-Containing Austenitic Stainless Steel under Low Temperature Environment[J]. Journal of Netshape Forming Engineering, 2025, 17(1): 87-96.
[25] 王凡, 孙振栋, 刘国强, 等. 基于扩展GTN-Thomason模型的Fe-Cr-Mo-Mn钢韧性断裂行为预测[J]. 锻压技术, 2024, 49(7): 235-242.
WANG F, SUN Z D, LIU G Q, et al.Prediction of Ductile Fracture Behavior for Fe-Cr-Mo-Mn Steel Based on Extended GTN-Thomason Model[J]. Forging & Stamping Technology, 2024, 49(7): 235-242.
[26] 叶文辉, 乔自平, 李君安, 等. 低温环境对枪械零件冲击疲劳的影响研究[J]. 兵器装备工程学报, 2024, 45(S1): 217-222.
YE W H, QIAO Z P, LI J A, et al.Study on the Influence of Low Temperature Environment on Impact Fatigue of Gun Parts[J]. Journal of Ordnance Equipment Engineering, 2024, 45(S1): 217-222.