一种基于直接力控制的防空制导炮弹研究

高伟, 程胜, 李凯, 徐礼, 马钰秋

装备环境工程 ›› 2025, Vol. 22 ›› Issue (7) : 74-80.

PDF(617 KB)
PDF(617 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (7) : 74-80. DOI: 10.7643/issn.1672-9242.2025.07.010
武器装备

一种基于直接力控制的防空制导炮弹研究

  • 高伟, 程胜, 李凯*, 徐礼, 马钰秋
作者信息 +

Air Defense Guided Projectile Based on Direct Force Control

  • GAO Wei, CHENG Sheng, LI Kai*, XU Li, MAYuqiu
Author information +
文章历史 +

摘要

目的 提升防空炮弹的命中精度和拦截距离,增强末端防御能力,提出一种基于直接力控制的防空制导炮弹方案。方法 引入高精度的指令制导系统,通过脉冲火箭的直接力控制,实现对炮弹速度方向的实时调整,用于动态修正射击偏差,提升命中精度和有效射程。通过对该方案的数学建模与仿真分析,以及蒙特卡洛模拟打靶试验,验证指令制导+脉冲直接力控制方案的有效性。结果 与传统无控弹相比,单发命中概率极大提升,将无控弹的落点散布从20 m提升至有控弹的2 m;将拦截所需的弹目速度比(弹丸速度/目标速度)从1.5降至0.4,具备拦截高速目标的能力;拦截距离从2 km提升至4 km以上。结论 考虑到实际作战需求和成本效益,在设计过程中注重成熟技术的应用,具有较强的环境适应性和低成本特性。基于直接力控制技术的防空制导炮弹具有较强的应用价值。

Abstract

To improve the hit probability and interception range of air defense guided projectilesand enhance the terminal defense capability, the work aims to propose a new scheme for air defense guided projectiles based on direct force control. A high-precision command guidance system was introduced to adjust the velocity direction of the projectile in real-time through the direct force control of pulse rockets, which was used for dynamic correction of shooting errors and improvement of hitting accuracy. Through mathematical modeling, simulation analysis, as well as Monte Carlo target shooting experiments, the effectiveness of the command guidance system +direct force control of pulse was verified. Compared with traditional unguided projectiles, the 20-meter point spread of unguided projectileswas improved to 2 meters for guided projectiles, resulting in a significant increase in single-shot hit probability. The required ratio of bullet-to-target speed(bullet speed/target speed) for interception decreased from 1.5 to 0.4, enabling the ability to intercept high-speed targets. The interception range increased from 2 kilometers to more than 4 kilometers. Considering actual combat requirements and costeffectiveness, mature technologies were emphasized during the design process, making it highly adaptable to various environments and characterized by low cost. In summary, the technology of direct force control has strong application value in the field of air defense guided shells.

关键词

末端防御 / 制导炮弹 / 指令制导 / 直接力控制 / 预测制导 / 防空弹药

Key words

terminal defense / guided projectiles / command guidance / direct force control / predictive guidance / air defense guided projectiles

引用本文

导出引用
高伟, 程胜, 李凯, 徐礼, 马钰秋. 一种基于直接力控制的防空制导炮弹研究[J]. 装备环境工程. 2025, 22(7): 74-80 https://doi.org/10.7643/issn.1672-9242.2025.07.010
GAO Wei, CHENG Sheng, LI Kai, XU Li, MAYuqiu. Air Defense Guided Projectile Based on Direct Force Control[J]. Equipment Environmental Engineering. 2025, 22(7): 74-80 https://doi.org/10.7643/issn.1672-9242.2025.07.010
中图分类号: TJ765.3   

参考文献

[1] 周加永, 张韬, 王亮宽, 等. 国外末端防空火炮发展新动态与启示[J]. 兵器装备工程学报, 2024, 45(9): 95-103.
ZHOU J Y, ZHANG T, WANG L K, et al.New Developments and Inspirations of Foreign Terminal Anti-Aircraft Artillery[J]. Journal of Ordnance Equipment Engineering, 2024, 45(9): 95-103.
[2] 徐继国, 陈东隅. 要地防空反无人机系统[J]. 兵器装备工程学报, 2019, 40(S1): 38-43.
XU J G, CHEN D Y.Key Air Defense Anti-UAV System[J]. Journal of Ordnance Equipment Engineering, 2019, 40(S1): 38-43.
[3] 焦延博, 欧阳稠, 罗文敏, 等. 小口径穿甲弹防空反导技术现状与发展[J]. 兵器装备工程学报, 2021, 42(12): 72-80.
JIAO Y B, OUYANG C, LUO W M, et al.Present Situation and Development of Air Defense and Antimissile of Small Caliber Armour-Piercing Projectile[J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 72-80.
[4] ZHOU D, SHAO C T.Dynamics and Autopilot Design for Endoatmospheric Interceptors with Dual Control Systems[J]. Aerospace Science and Technology, 2009, 13(6): 291-300.
[5] LIBERZON D, TEMPO R.Common Lyapunov Functions and Gradient Algorithms[J]. IEEE Transactions on Automatic Control, 2004, 49(6): 990-994.
[6] 刘祥, 李爱军, 郭永, 等. 固定时间收敛的空空导弹直接力/气动力复合控制[J]. 哈尔滨工业大学学报, 2019, 51(9): 29-34.
LIU X, LI A J, GUO Y, et al.Fixed-Time Convergence Blended Control for Air-to-Air Missile with Lateral Thrusters and Aerodynamic Force[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 29-34.
[7] HONG J H, LEE C H.Nonlinear Autopilot Design for Endo- and Exoatmospheric Interceptor with Thrust Vector Control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 796-810.
[8] KIM S, CHO D, KIM H J.Force and Moment Blending Control for Fast Response of Agile Dual Missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 938-947.
[9] 陈胜政, 王天明, 陈明哲, 等. 末端防御制导炮弹发展现状及关键技术分析[J]. 火炮发射与控制学报, 2024, 45(5): 91-95.
CHEN S Z, WANG T M, CHEN M Z, et al.Development Status and Key Technology Analysis of Terminal Defense Guided Projectiles[J]. Journal of Gun Launch & Control, 2024, 45(5): 91-95.
[10] HAHN P V, FREDERICK R A, SLEGERS N.Predictive Guidance of a Projectile for Hit-to-Kill Interception[J]. IEEE Transactions on Control Systems Technology, 2009, 17(4): 745-755.
[11] 沈昭烈, 吴霞. 空空导弹推力矢量控制系统[J]. 战术导弹控制技术, 2002(2): 1-6.
SHEN Z L, WU X.Air-to-Air Missile Thrust Vector Control System[J]. Tactical Missile Control Technology, 2002(2): 1-6.
[12] 陈海建. 先进防空导弹关键技术分析及发展启示[J]. 现代防御技术, 2020, 48(4): 60-66.
CHEN H J.Key Technology Analysis and Development Enlightenment of Advanced Air Defense Missile[J]. Modern Defence Technology, 2020, 48(4): 60-66.
[13] 刘野, 袁欣, 张蕾. 美国多方位防御-快速拦截弹交战系统发展情况分析[J]. 飞航导弹, 2020(3): 1-4.
LIU Y, YUAN X, ZHANG L.Analysis on the Development of American Multi-Directional Defense-Fast Interceptor Engagement System[J]. Aerodynamic Missile Journal, 2020(3): 1-4.
[14] 肖科, 雷虎民, 张维刚, 等. 防空导弹直接侧向力与气动力复合控制技术综述[J]. 飞航导弹, 2013(1): 72-77.
XIAO K, LEI H M, ZHANG W G, et al.Summary of Compound Control Technology of Direct Lateral Force and Aerodynamic Force for Air Defense Missile[J]. Aerodynamic Missile Journal, 2013(1): 72-77.
[15] 刘海霞. 法意联合研制系列化防空导弹[J]. 中国航天, 2001(3): 32-34.
LIU H X.France and Italy Jointly Develop a Series of Air Defense Missiles[J]. Aerospace China, 2001(3): 32-34.
[16] 常思江, 王中原, 李岩, 等. 指令制导防空炮弹启控点参数的确定方法[J]. 火力与指挥控制, 2009, 34(12): 79-81.
CHANG S J, WANG Z Y, LI Y, et al.A Method for Determining Starting Control Point Parameters of Command Guided Antiaircraft Projectile[J]. Fire Control and Command Control, 2009, 34(12): 79-81.
[17] 李岩, 王中原, 易文俊, 等. 鸭舵控制的防空制导炮弹重力补偿分析[J]. 弹道学报, 2008, 20(4): 32-35.
LI Y, WANG Z Y, YI W J, et al.Analysis on Gravity Compensation of Anti-Aircraft Guided Projectile Controlled by Canard[J]. Journal of Ballistics, 2008, 20(4): 32-35.
[18] 常思江, 王中原, 刘铁铮. 防空制导炮弹有控弹道动态稳定性分析[J]. 弹箭与制导学报, 2010, 30(1): 157-160.
CHANG S J, WANG Z Y, LIU T Z.Analysis on the Dynamic Stability of Antiaircraft Guided Projectile in Its Controllable Trajectory[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(1): 157-160.
[19] 许俊飞, 杨光, 吴玲, 等. 舰载防空制导炮弹杀伤空域建模[J]. 电光与控制, 2023, 30(11): 26-32.
XU J F, YANG G, WU L, et al.Killing Airspace Modeling of Shipborne Air Defense Guided Projectile[J]. Electronics Optics & Control, 2023, 30(11): 26-32.
[20] 姚鸿鹤, 卢发兴, 许俊飞. 防空制导炮弹的指令控制模式分析[J]. 指挥控制与仿真, 2019, 41(6): 41-47.
YAO H H, LU F X, XU J F.Analysis of Command Control Mode of Air Defense Guided Projectile[J]. Command Control & Simulation, 2019, 41(6): 41-47.
[21] 俞波. 激光末制导炮弹制导误差分析[J]. 兵工自动化, 2018, 37(9): 46-48.
YU B.Guidance Error Analysis of Laser Terminal Guidance Shell[J]. Ordnance Industry Automation, 2018, 37(9): 46-48.
[22] YEH F K, CHENG K Y, FU L C.Variable Structure-Based Nonlinear Missile Guidance/Autopilot Design with Highly Maneuverable Actuators[J]. IEEE Transactions on Control Systems Technology, 2004, 12(6): 944-949.
[23] 王代智, 段菖蒲, 陶晶. 激光末制导炮弹制导误差分析[C]// OSEC首届兵器工程大会论文集. 北京: 北京理工大学出版社, 2017.
WANG D Z, DUAN C P, TAO J.Guidance Error Analysis of Laser Terminal Guided Projectile[C]// Proceedings of the First OSEC Ordnance Engineering Conference. Beijing: Beijing Institute of Technology Press, 2017.
[24] 王海宁, 王军, 刘康. 防空高炮对RAM类弹毁歼效能仿真[C]// 第四届中国指挥控制大会论文集. 北京: 中国指挥与控制学会, 2016.
WANG H N, WANG J, LIU K.Simulation of Anti-aircraft Gun Effectiveness against RAM-class Targets[C]// Proceedings of the 4th China Command and Control Conference. Beijing: Chinese Institute of Command and Control, 2016.
[25] 常思江, 王中原, 林献武. 一种防空指令修正弹控制模式研究[J]. 海军工程大学学报, 2008, 20(6): 92-96.
CHANG S J, WANG Z Y, LIN X W.A Control Mode of Antiaircraft Command Correction Projectile[J]. Journal of Naval University of Engineering, 2008, 20(6): 92-96.

PDF(617 KB)

Accesses

Citation

Detail

段落导航
相关文章

/