空腔噪声数值计算方法及噪声抑制方法研究

宁舜山, 张倩, 任杰, 李惟海, 王振东

装备环境工程 ›› 2025, Vol. 22 ›› Issue (7) : 105-113.

PDF(8061 KB)
PDF(8061 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (7) : 105-113. DOI: 10.7643/issn.1672-9242.2025.07.014
航空航天装备

空腔噪声数值计算方法及噪声抑制方法研究

  • 宁舜山1, 张倩2, 任杰1, 李惟海1, 王振东1
作者信息 +

Methods for Numerical Simulation and Suppression of Cavity Noise

  • NING Shunshan1, ZHANG Qian2, REN Jie1, LI Weihai1, WANG Zhendong1
Author information +
文章历史 +

摘要

目的 显著降低空腔噪声问题对先进飞行器、动力装置等研制的影响,以及提高空腔噪声数值计算精度。方法 采用大涡模拟和计算气动声学相结合的方法,对典型开式空腔噪声进行数值计算,分析空腔噪声的产生机理、总声压级分布特性和典型监测点的噪声频谱特性,研究大涡模拟不同亚格子尺度模型对数值计算结果的影响,提出一种基于空腔前后壁修形的噪声抑制方法。结果 计算采用不同亚格子尺度模型时空腔噪声的总声压级分布和噪声频谱,发现采用WALE(Wall Adapting Local Eddy Viscosity)模型时数值计算结果与试验值吻合最好,采用DSM(Dynamic Smagorinsky-Lilly)模型时次之,采用SM(Smagorinsky-Lilly)模型时误差相对最大。此外,还计算了前后壁修形对空腔噪声的抑制效果,发现其能显著改善腔内的强噪声环境。不同亚格子尺度模型会对空腔噪声数值计算结果产生影响,采用WALE模型的数值计算结果与试验值最接近。此外,空腔前后壁修形可显著抑制空腔噪声,Ma=0.85和Ma=0.6时,腔内总声压级最大降幅分别达到了7.82、6.63 dB,主模态声压级分别降低了4.56、5.65 dB,同时主模态频率向低频分别移动了27.14、27.22 Hz。结论 主模态频率的大幅移动可避开空腔声共振频率,有效避免了空腔结构及腔内武器装备发生随机振动,甚至声疲劳破坏。

Abstract

To significantly reduce the impact of cavity noise on development of advanced aircraft and propulsion systems, and to improve the numerical simulation accuracy of cavity noise, this study combines Large Eddy Simulation (LES) and Computational Aeroacoustics (CAA) to numerically investigate a typical open cavity. The generation mechanism of cavity noise, the distribution of the overall sound pressure level (OASPL), and the spectral characteristics at representative monitoring points are analyzed. The impact of different subgrid-scale (SGS) models in LES on numerical results is examined, and a noise suppression method based on geometric modifications to the front and rear cavity walls is proposed. The distribution of total sound pressure level and the noise spectrum of the space-time cavity noise using SGS models are calculated. It is reveal that the Wall Adapting Local Eddy Viscosity (WALE) model achieves the closest agreement with experimental data, followed by the Dynamic Smagorinsky-Lilly (DSM) model, while the standard Smagorinsky-Lilly (SM) model exhibits the largest discrepancies. Additionally, geometric modifications to the cavity walls demonstrate significant noise suppression effects. The results indicate that the choice of SGS models critically affects numerical accuracy, with the WALE model providing the most reliable predictions. Furthermore, the geometric modifications to the cavity walls demonstrate significant noise suppression effects: the maximum reductions in OASPL reach 7.82 dB and 6.63 dB at Mach numbers (Ma) of 0.85 and 0.6, respectively. The dominant modal sound pressure levels are reduced by 4.56 dB and 5.65 dB, while the primary modal frequencies shift toward lower frequencies by 27.14 Hz and 27.22 Hz, respectively. This substantial frequency shift effectively avoids resonance frequencies of the cavity, thereby preventing random vibrations and potential acoustic fatigue damage to the cavity structure and internal equipment.

关键词

空腔噪声 / 噪声控制 / 大涡模拟 / 亚格子尺度模型 / 噪声频谱 / 总声压级

Key words

cavity noise / noise suppression / Large Eddy Simulation (LES) / subgrid-scale (SGS) model / noise spectrum / overall sound pressure level (OASPL)

引用本文

导出引用
宁舜山, 张倩, 任杰, 李惟海, 王振东. 空腔噪声数值计算方法及噪声抑制方法研究[J]. 装备环境工程. 2025, 22(7): 105-113 https://doi.org/10.7643/issn.1672-9242.2025.07.014
NING Shunshan, ZHANG Qian, REN Jie, LI Weihai, WANG Zhendong. Methods for Numerical Simulation and Suppression of Cavity Noise[J]. Equipment Environmental Engineering. 2025, 22(7): 105-113 https://doi.org/10.7643/issn.1672-9242.2025.07.014
中图分类号: TJ85   

参考文献

[1] HELLER H, BLISS D.Aerodynamically Induced Resonance in Rectangular Cavities—Physical Mechanisms and Suppression Concepts[R]. AFFDL-TR-74-133, 1975.
[2] ROWLEY C W, WILLIAMS D R.Dynamics and Control of high-Reynolds-Number Flow over Open Cavities[J]. Annual Review of Fluid Mechanics, 2006, 38: 251-276.
[3] TAM C J, ORKWIS P D, DISIMILE P J.Algebraic Turbulence Model Simulations of Supersonic Open-Cavity Flow Physics[J]. AIAA Journal, 1996, 34(11): 2255-2260.
[4] SADDINGTON A J, THANGAMANI V, KNOWLES K.Comparison of Passive Flow Control Methods for a Cavity in Transonic Flow[J]. Journal of Aircraft, 2016, 53(5): 1439-1447.
[5] OMER A, MOHANY A.The Effect of High Frequency Vortex Generator on the Acoustic Resonance Excitation in Shallow Rectangular Cavities[J]. Canadian Acoustics, 2014, 42(3): 124.
[6] MAURYA P K, RAJEEV C, VINIL KUMAR R R, et al. Effect of Aft Wall Offset and Ramp on Pressure Oscillation from Confined Supersonic Flow over Cavity[J]. Experimental Thermal and Fluid Science, 2015, 68: 559-573.
[7] PEY Y Y, CHUA L P.Effects of Trailing Wall Modifications on Cavity Wall Pressure[J]. Experimental Thermal and Fluid Science, 2014, 57: 250-260.
[8] GEORGE B, UKEILEY L S, CATTAFESTA L N, et al.Control of Three-Dimensional Cavity Flow Using Leading-Edge Slot Blowing[C]// 53rd AIAA Aerospace Sciences Meeting. Virginia: AIAA, 2015.
[9] BENNETT G J, OKOLO P N, ZHAO K, et al.Cavity Resonance Suppression Using Fluidic Spoilers[J]. AIAA Journal, 2019, 57(2): 706-719.
[10] YUGULIS K, GREGORY J, SAMIMY M.Control of High Subsonic Cavity Flow Using Plasma Actuators[J]. AIAA journal, 2014, 52(7): 1542-1554.
[11] DE JONG A, BIJL H.Corner-Type Plasma Actuators for Cavity Flow-Induced Noise Control[J]. AIAA Journal, 2013, 52(1): 33-42.
[12] YANG D G, FAN Z L, LI J Q, et al.Effects of boundary-Layer Thickness on Flow Oscillations Inside Open Cavities at Supersonic Speeds[J]. Modern Physics Letters B, 2010, 24(4/5): 487-493.
[13] YANG D G, FAN Z L, LI J Q, et al.Effect of Free-Stream Boundary-Layer Thickness on Aeroacoustic Characteristics of Open Cavity Flow[C]// Proceedings of the 10th International Conference on Fluid Control, Measurements, and Visualization. Moscow: [s. n.], 2009.
[14] 杨党国, 刘俊, 王显圣, 等. 典型构型空腔模型设计与流动/噪声特性研究[J]. 空气动力学学报, 2018, 36(3): 432-439.
YANG D G, LIU J, WANG X S, et al.Analysis of Design Method and Aeroacoustics Characteristics Inside Typical Cavity[J]. Acta Aerodynamica Sinica, 2018, 36(3): 432-439.
[15] 杨党国, 李建强, 蒋卫民, 等. 不同马赫数下长深比对空腔声学特性的影响[J]. 工程力学, 2011, 28(12): 221-225.
YANG D G, LI J Q, JIANG W M, et al.Investigations on Aeroacoustic Characteristics Inside Cavities Influenced by length-Depth Ratios at Different Mach Numbers[J]. Engineering Mechanics, 2011, 28(12): 221-225.
[16] 吴继飞, 徐来武, 范召林, 等. 后壁倒角对开式空腔气动噪声抑制作用研究[J]. 空气动力学学报, 2017, 35(5): 645-649.
WU J F, XU L W, FAN Z L, et al.Effect of Chamfer Rear-Face Angle on Open Cavity Flow Aero-Acoustic Noise Suppression[J]. Acta Aerodynamica Sinica, 2017, 35(5): 645-649.
[17] WU J F, FAN Z L, LUO X F.Analysis of the Effects of mass-Injection at the Leading Edge on Cavity Flow Characteristics[J]. Modern Physics Letters B, 2009, 23(3): 413-416.
[18] 吴继飞, 罗新福, 徐来武, 等. 内埋武器舱关键气动及声学问题研究[J]. 空气动力学学报, 2016, 34(4): 482-489.
WU J F, LUO X F, XU L W, et al.Investigation on Key Aerodynamic and Aeroacoustic Problems of Internal Weapons Bay[J]. Acta Aerodynamica Sinica, 2016, 34(4): 482-489.
[19] 余培汛, 白俊强, 郭博智, 等. 剪切层形态对开式空腔气动噪声的抑制[J]. 振动与冲击, 2015, 34(1): 156-164.
YU P X, BAI J Q, GUO B Z, et al.Suppression of Aerodynamic Noise by Altering the Form of Shear Layer in Open Cavity[J]. Journal of Vibration and Shock, 2015, 34(1): 156-164.
[20] 谭玉婷, 伍贻兆, 田书玲. 基于DES的二维和三维空腔流动特性研究[J]. 航空计算技术, 2010, 40(1): 67-70.
TAN Y T, WU Y Z, TIAN S L.Numerical Simulation of 2D/3D Cavity Flows Using DES[J]. Aeronautical Computing Technique, 2010, 40(1): 67-70.
[21] 刘琼, 桑为民, 雷熙薇. 二维空腔超声速流动特性及形状影响数值研究[J]. 航空计算技术, 2010, 40(6): 81-85.
LIU Q, SANG W M, LEI X W.Numerical Simulation of Flow Characteristics and Cavity Configuration Impact on the Supersonic Cavity Flow[J]. Aeronautical Computing Technique, 2010, 40(6): 81-85.
[22] HENSHAW M J.M219 Cavity Case[R]. East Riding of Yorkshire: British Aerospace Operations Ltd Brough Military Aircraft and Aerostructures, 2000.
[23] MENDONCA F, ALLEN R, DE CHARENTENAY J, et al.CFD Prediction of Narrowband and Broadband Cavity Acoustics at Ma=0.85[C]// Proceedings of 9th AIAA/ CEAS Aeroacoustics Conference and Exhibit. Virginia: AIAA, 2003 .
[24] CHEN X, SANDHAM N D, ZHANG X.Cavity Flow Noise Predictions[R]. Southampton: University of Southampton, 2007.
[25] ROWLEY C, COLONIUS T, MURRAY R.POD Based Models of Self-Sustained Oscillations in the Flow Past an Open Cavity[C]// Proceedings of 6th Aeroacoustics Conference and Exhibit. Virginia: AIAA, 2000.

PDF(8061 KB)

Accesses

Citation

Detail

段落导航
相关文章

/