目的 研究水蒸发制冷器在飞行工况下的制冷性能,为工程应用提供理论和试验数据支撑。方法 首先结合应用场景,通过理论计算方法评估不同飞行工况下水蒸发制冷器的制冷性能,然后搭建试验装置,模拟不同压力、温度、湿度的使用环境,并对水蒸发器在不同环境下的性能进行试验测试,获取性能测试数据。结果 将水蒸发制冷器性能评估的理论计算方法与飞机飞行工况及天气条件紧密结合,通过飞行高度、速度、空气湿度、水蒸发器流阻特性等条件能够计算评估水蒸发器的制冷性能,并借助试验装置进行水蒸发制冷器在不同工况下的制冷性能测试,进一步验证了理论计算评估方法的有效性,为工程应用提供了高效的设计途径。结论 通过理论分析和试验结果表明,水蒸发制冷器在飞机应用领域具有较高的制冷性能和高可靠性,能够改善飞机内设备的工作温度环境,提高飞机的功能可靠性和环境适应性。
Abstract
The work aims to investigate the refrigeration performance of water evaporation coolers under high-altitude flight conditions and provide theoretical and experimental data support for engineering applications. Firstly, theoretical calculation methods were used to evaluate the refrigeration performance of water evaporation coolers under different flight conditions based on application scenarios. Then, an experimental setup was constructed to simulate operating environments with varying pressure, temperature, and humidity. Performance tests were conducted on the water evaporation cooler under these conditions to obtain test data. The theoretical calculation method was closely integrated with application factors such as flight conditions, weather parameters, flight altitude, speed, air humidity, and flow resistance characteristics of the water evaporation cooler. These factors enabled the evaluation of the cooler's refrigeration performance. Experimental simulations further validated the effectiveness of the theoretical calculation method by testing the cooler's performance under diverse operating conditions, providing an efficient design pathway for engineering applications. Theoretical analysis and experimental results demonstrate that water evaporation coolers exhibit high refrigeration performance and reliability in practical applications. The coolers can be applied to improve the operational temperature environment of onboard equipment as well as enhance the functional reliability and environmental adaptability of civil aircraft.
关键词
水蒸发制冷器 /
环境控制 /
性能评估 /
制冷性能 /
飞行工况 /
含湿量
Key words
water evaporation cooler /
environmental control /
performance evaluation /
refrigeration performance /
flight conditions /
humidity ratio
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 肖滨. 机载吊舱环境控制系统[J]. 电子机械工程, 2008, 24(3): 14-16.
XIAO B.Environmental Control System for Airborne Pods[J]. Electro-Mechanical Engineering, 2008, 24(3): 14-16.
[2] 蔺永良, 王树峰, 彭建, 等. 飞机吊舱用环境控制系统: CN202208368U[P].2012-05-02.
LIN Y L, WANG S F, PENG J, et al. Environment Control System for Aircraft Pods: CN202208368U[P].2012-05-02.
[3] 白茹, 李定坤, 郭曼利. 国内外机载电子设备液体冷却系统分析[J]. 装备环境工程, 2022, 19(10): 73-79.
BAI R, LI D K, GUO M L.Liquid Cooling System for Airborne Electronic Equipment at Home and Abroad[J]. Equipment Environmental Engineering, 2022, 19(10): 73-79.
[4] 王超, 包胜, 王璐璐. TTC双涡轮并行制冷吊舱环控系统性能研究[J]. 电子机械工程, 2017, 33(1): 48-51.
WANG C, BAO S, WANG L L.Capability Analysis of Double-Turbo Parallel Refrigeration of Turbo-Turbo-Compressor Environment Control System of Pods[J]. Electro-Mechanical Engineering, 2017, 33(1): 48-51.
[5] 庞利娥, 蒋福根. 一种机载电子吊舱热环境设计与分析[J]. 航天电子对抗, 2013, 29(4): 55-58.
PANG L E, JIANG F G.Thermal Environment Design and Analysis of the Aircraft Electronic Pod[J]. Aerospace Electronic Warfare, 2013, 29(4): 55-58.
[6] 余建祖, 苏楠. 电子吊舱的环境控制技术[J]. 低温工程, 1998(1): 45-50.
YU J Z, SU N.Environmental Control Technology for Avionics Pods[J]. Cryogenics, 1998(1): 45-50.
[7] 刘鑫鑫. 某型吊舱环控系统组件的研制及性能研究[D]. 南京: 南京航空航天大学, 2012.
LIU X X.Development and Performance Study of Environmental Control System Components of a Pod[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[8] 余建祖, 钱翼稷. 电子设备吊舱冲压空气驱动的环境控制系统研制[J]. 航空学报, 1997, 18(1): 96-99.
YU J Z, QIAN Y J.The Development of a Ram Air Driven Environmental Control System for Avionics Pods[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(1): 96-99.
[9] 邓瑾智. 动力涡轮驱动的逆升压式空气循环制冷系统研究[D]. 南京: 南京航空航天大学, 2009.
DENG J Z.Study on Reverse Booster Air Circulation Refrigeration System Driven by Power Turbine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[10] 肖晓劲, 袁修干, 高峰. 高速电机驱动的逆升压式空气循环制冷系统研究[J]. 真空与低温, 2004, 10(3): 163-167.
XIAO X J, YUAN X G, GAO F.Research on reverse-Bootstrap Air Cycle Refrigeration System Driven by high-Speed Motor[J]. Vacuum and Cryogenics, 2004, 10(3): 163-167.
[11] 郭侨. 动力涡轮驱动的逆升压式空气循环制冷系统的设计与优化[D]. 南京: 南京航空航天大学, 2009.
GUO Q.Design and Optimization of Reverse Boost Air Cycle Refrigeration System Driven by Power Turbine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[12] 王超, 叶元鹏. 某直升机载电子吊舱环控供液系统[J]. 电子机械工程, 2017, 33(5): 32-35.
WANG C, YE Y P.Liquid Supply Environmental Control System for Helicopter-Mounted Electronic Pod[J]. Electro-Mechanical Engineering, 2017, 33(5): 32-35.
[13] 赵俊如, 史忠科. 飞机环境控制系统的仿真研究[J]. 计算机测量与控制, 2005, 13(6): 542-544.
ZHAO J R, SHI Z K.Simulation Study on Aircraft Environmental Control System[J]. Computer Automated Measurement & Control, 2005, 13(6): 542-544.
[14] 何君, 赵竞全, 孙薇. 航空升压式空气循环制冷组件动态特性的仿真研究[J]. 系统仿真学报, 2004, 16(4): 727-729.
HE J, ZHAO J Q, SUN W.Dynamic Simulation of Bootstrap Air Cycle Refrigeration Components for Aircraft Environmental Control System[J]. Acta Simulata Systematica Sinica, 2004, 16(4): 727-729.
[15] 夏青, 黄翔, 殷清海. 直接蒸发冷却器用填料性能评价指标诠释[J]. 制冷, 2012, 31(1): 78-82.
XIA Q, HUANG X, YIN Q H.Explanation of Direct Evaporative Cooler with Packing Performance Evaluation Index[J]. Refrigeration, 2012, 31(1): 78-82.
[16] 陈焕新, 张登春. 蒸发冷却技术在我国中南地区应用的可行性研究[J]. 制冷, 2001, 20(4): 40-43.
CHEN H X, ZHANG D C.Application Research of Evaporative Cooling Technique in Areas of Central South China[J]. Refrigeration, 2001, 20(4): 40-43.
[17] 郭新川, 赵戌贵, 王中铮, 等. 蒸发冷却换热器性能的影响因素[J]. 天津大学学报, 1996, 29(4): 569-572.
GUO X C, ZHAO X G, WANG Z Z, et al.The Effectiveness of Indirect Evaporative Coolers[J]. Journal of Tianjin University (Science and Technology), 1996, 29(4): 569-572.
[18] 蒋毅. 高效节能的蒸发冷却技术及其应用的建模与实验研究[D]. 南京: 东南大学, 2006.
JIANG Y.An Efficient Energy-Saving Technology— Evaporative Cooling and Its Application: Modelling and Experimental Research[D]. Nanjing: Southeast University, 2006.
[19] 杜鹃翔, 武俊梅, 黄翔. 直接蒸发冷却系统传热传质过程的数值模拟[J]. 制冷与空调, 2005, 5(2): 28-33.
DU J X, WU J M, HUANG X.Numerical Simulation of Heat and Mass Transfer Process in Direct Evaporative Cooling System[J]. Refrigeration and Air Conditioning, 2005, 5(2): 28-33.
[20] 霍海红, 黄翔, 殷清海. 基于正交试验法的直接蒸发冷却器填料性能测试与分析[J]. 制冷技术, 2013, 33(1): 19-22.
HUO H H, HUANG X, YIN Q H.Test and Analysis on the Performance of Packing in Direct Evaporative Cooler by Orthogonal Experiment Method[J]. Chinese Journal of Refrigeration Technology, 2013, 33(1): 19-22.
[21] 赵荣义, 范存养, 薛殿华, 等. 空气调节[M]. 4版. 北京: 中国建筑工业出版社, 2009.
ZHAO R Y, FAN C Y, XUE D H, et al.Air Conditioning[M]. 4th ed. Beijing: China Architecture & Building Press, 2009.
[22] 褚鑫, 司俊姗, 王超, 等. 一种消耗性蒸发制冷装置及使用方法: CN113074473B[P].2022-06-28.
CHU X, SI J S, WANG C, et al. A Expendable Evaporative Cooling Device and Method of Use: CN113074473B[P].2022-06-28.
[23] 包胜, 王敬韬, 司俊珊, 等. 液冷电子吊舱温度环境测试研究[J]. 装备环境工程, 2022, 19(4): 80-85.
BAO S, WANG J T, SI J S, et al.Ambient Temperature Inside Liquid-Cooled Electronic Pod[J]. Equipment Environmental Engineering, 2022, 19(4): 80-85.
[24] 何庆芝. 飞机设计手册[M]. 北京: 航空工业出版社, 1996.
HE Q Z.Aircraft Design Manual[M]. Beijing: Aviation Industry Press, 1996.
[25] 国防科学工业委员会. 飞机环境控制系统通用规范: GJB 1193—1991[S]. 北京: 中国标准出版社, 1991.
Commission of Science, Technology and Industy for National Defense. General Specification for Aircraft Environmental Control Systems: GJB 1193—1991[S]. Beijing: Standards Press of China, 1991.