Review of Calculation Methods for Structural Reliability
SHI Xianjie1, HUANG Zhou1, ZHU Xiaolong2,*
Author information+
1. Institute of Systems Engineering, China Academy of Engineering Physics, Sichuan Mianyang 621999, China; 2. China Academy of Engineering Physics, Sichuan Mianyang 621999, China
This paper categorizes and compares three typical structural reliability calculation approaches: approximate analysis methods, simulation methods, and surrogate model-based methods. From the perspectives of performance function approximation, probabilistic modeling, and computational efficiency, this paper systematically examines the basic principles, key advantages, and applicable scenarios of each method. This study aims to provide a theoretical foundation for selecting appropriate calculation methods for structural reliability in engineering practice and to offer directional guidance for future research in the field of structural reliability.
SHI Xianjie, HUANG Zhou, ZHU Xiaolong.
Review of Calculation Methods for Structural Reliability[J]. Equipment Environmental Engineering. 2025, 22(7): 131-146 https://doi.org/10.7643/issn.1672-9242.2025.07.017
中图分类号:
TJ03
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NIU X P, HE C, ZHU S P, et al.Defect Sensitivity and Fatigue Design: Deterministic and Probabilistic Aspects in Additively Manufactured Metallic Materials[J]. Progress in Materials Science, 2024, 144: 101290. [2] NIU X P, ZHU S P, HE J C, et al.Defect Tolerant Fatigue Assessment of AM Materials: Size Effect and Probabilistic Prospects[J]. International Journal of Fatigue, 2022, 160: 106884. [3] 赵齐. 工程结构可靠度理论综述[J]. 四川建筑, 2019, 39(3): 199-200. ZHAO Q.Summary of Reliability Theory of Engineering Structure[J]. Sichuan Architecture, 2019, 39(3): 199-200. [4] 郭惠昕, 锁斌, 张干清. 考虑随机和认知混合不确定性的稳健性分析与稳健设计方法[J]. 机械科学与技术, 2018, 37(5): 774-780. GUO H X, SUO B, ZHANG G Q.A Method for Robustness Analysis and Robust Design with Mixed Aleatory and Epistemic Uncertainties Considered[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 774-780. [5] 顾丽娜. 水利水电工程经济效益风险分析方法研究[J]. 水利水电技术, 2005, 36(4): 21-22. GU L N.Study on Risk Analysis Methods of Economic Benefits for Water Conservancy Projects[J]. Water Resources and Hydropower Engineering, 2005, 36(4): 21-22. [6] 余学锋, 于杰, 张红清. 基于可能性理论的测试信息融合及不确定性处理方法与分析[J]. 计量学报, 2018, 39(1): 140-144. YU X F, YU J, ZHANG H Q.Analysis of Measurement Message Fusion and Uncertainty Treatment Based on Possibility Theory[J]. Acta Metrologica Sinica, 2018, 39(1): 140-144. [7] ZACKS S.Introduction to Reliability Analysis: Probability Models and Statistical Methods[M]. New York: Springer-Verlag, 1992: 13-38. [8] 李晓霞, 杨瑞刚, 胡立春, 等. 基于区间分析的履带起重机结构非概率可靠性研究[J]. 安全与环境学报, 2018, 18(1): 28-32. LI X X, YANG R G, HU L C, et al.Non-Probabilistic Reliability Study for the Crawler Crane Structure Based on the Interval Analysis[J]. Journal of Safety and Environment, 2018, 18(1): 28-32. [9] 杨瑞刚, 马艳利, 徐格宁. 基于区间分析的起重机结构非概率可靠性分析[J]. 安全与环境学报, 2016, 16(4): 12-16. YANG R G, MA Y L, XU G N.Non-Probabilistic Reliability Analysis of the Crane Structure Based on the Interval Analysis[J]. Journal of Safety and Environment, 2016, 16(4): 12-16. [10] 陶友瑞, 韩旭. 基于凸模型的复杂多学科系统可靠性设计研究[J]. 计算力学学报, 2014, 31(1): 8-12. TAO Y R, HAN X.Research on Reliability Design of Complex Multidisciplinary System Based on Convex Model Theory[J]. Chinese Journal of Computational Mechanics, 2014, 31(1): 8-12. [11] 李宗坤, 宋子元, 葛巍, 等. 基于模糊集理论的土石坝开裂破坏风险分析[J]. 郑州大学学报(工学版), 2020, 41(5): 55-59. LI Z K, SONG Z Y, GE W, et al.Risk Analysis of Cracking Failure of Earth-Rock Dam Based on Fuzzy Set Theory[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 55-59. [12] 任道远. 基于kriging模型的证据理论结构体系可靠性分析方法[D]. 长沙: 湖南大学, 2020. REN D Y.Reliability Analysis Method of Evidence Theory Structure System Based on Kriging Model[D]. Changsha: Hunan University, 2020. [13] FREUDENTHAL A M.The Safety of Structures[J]. Transactions of the American Society of Civil Engineers, 1947, 112(1): 125-159. [14] ZHU S P, KESHTEGAR B.Structural Reliability Analysis: Analytical Methods[M]. Berlin: Springer Nature, 2025. [15] WANG Q, ZHU S P, CORREIA J, et al.Fatigue of Materials and Structures: Physics and Data Science[M]. Florida: CRC Press, 2018. [16] BABOLIAN E, MASJEDJAMEI M, ESLAHCHI M R.On Numerical Improvement of Gauss-Legendre Quadrature Rules[J]. Applied Mathematics and Computation, 2005, 160(3): 779-789. [17] LIU Q, PIERCE D A.A Note on Gauss—Hermite Quadrature[J]. Biometrika, 1994, 81(3): 624-629. [18] LUO C Q, KESHTEGAR B, ZHU S P, et al.Hybrid Enhanced Monte Carlo Simulation Coupled with Advanced Machine Learning Approach for Accurate and Efficient Structural Reliability Analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114218. [19] LUO C Q, KESHTEGAR B, ZHU S P, et al.EMCS-SVR: Hybrid Efficient and Accurate Enhanced Simulation Approach Coupled with Adaptive SVR for Structural Reliability Analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 400: 115499. [20] LUO C Q, ZHU S P, LV Y J, et al.Uniform Importance Sampling with Rejection Control for Structural Reliability Analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 436: 117707. [21] DOLINSKI K.First-Order Second-Moment Approximation in Reliability of Structural Systems: Critical Review and Alternative Approach[J]. Structural Safety, 1983, 1(3): 211-231. [22] WONG F S. First-Order, Second-Moment Methods[J]. Computers & Structures, 1985, 20(4): 779-791. [23] CAI G Q, ELISHAKOFF I.Refined Second-Order Reliability Analysis[J]. Structural Safety, 1994, 14(4): 267-276. [24] HALDAR A, MAHADEVAN S.Probabilistic Structural Mechanics Handbook[M]. Boston: Springer, 1995: 27-52. [25] 芦晶晶, 赵渊, 赵勇帅, 等. 含分布式电源配电网可靠性评估的点估计法[J]. 电网技术, 2013, 37(8): 2250-2257. LU J J, ZHAO Y, ZHAO Y S, et al.A Point Estimation Method for Reliability Evaluation of Distribution Network with Distributed Generation[J]. Power System Technology, 2013, 37(8): 2250-2257. [26] NAESS A, LEIRA B J, BATSEVYCH O.System Reliability Analysis by Enhanced Monte Carlo Simulation[J]. Structural Safety, 2009, 31(5): 349-355. [27] LIU X, LI D Q, CAO Z J, et al.Adaptive Monte Carlo Simulation Method for System Reliability Analysis of Slope Stability Based on Limit Equilibrium Methods[J]. Engineering Geology, 2020, 264: 105384. [28] EL AMINE BEN SEGHIER M, KESHTEGAR B, CORREIA J A F O, et al. Reliability Analysis Based on Hybrid Algorithm of M5 Model Tree and Monte Carlo Simulation for Corroded Pipelines: Case of Study X60 Steel Grade Pipes[J]. Engineering Failure Analysis, 2019, 97: 793-803. [29] YANG X F, CHENG X, LIU Z Q, et al.An Adaptive Method Fusing the Kriging Model and Multimodal Importance Sampling for Profust Reliability Analysis[J]. Engineering Optimization, 2022, 54(11): 1870-1886. [30] ZHOU Z, LI D Q, XIAO T, et al.Response Surface Guided Adaptive Slope Reliability Analysis in Spatially Varying Soils[J]. Computers and Geotechnics, 2021, 132: 103966. [31] GHARAIBEH M A.Reliability Analysis of Vibrating Electronic Assemblies Using Analytical Solutions and Response Surface Methodology[J]. Microelectronics Reliability, 2018, 84: 238-247. [32] WANG Z Z, XIAO C L, GOH S H, et al.Metamodel-Based Reliability Analysis in Spatially Variable Soils Using Convolutional Neural Networks[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04021003. [33] AHMAD A, ELCHALAKANI M, ELMESALAMI N, et al.Reliability Analysis of Strength Models for Short-Concrete Columns under Concentric Loading with FRP Rebars through Artificial Neural Network[J]. Journal of Building Engineering, 2021, 42: 102497. [34] CORNELL C A.A Probability-Based Structural Code[J]. ACI Journal Proceedings, 1969, 66(12): 974-985. [35] HASOFER A M, LIND N C.Exact and Invariant Second-Moment Code Format[J]. Journal of the Engineering Mechanics Division, 1974, 100(1): 111-121. [36] RACKWITZ R, FLESSLER B.Structural Reliability under Combined Random Load Sequences[J]. Computers & Structures, 1978, 9(5): 489-494. [37] 杨绿峰, 袁彦华, 余波. 基于等概率近似变换的向量型层递响应面法分析结构可靠度[J]. 工程力学, 2014, 31(7): 185-191. YANG L F, YUAN Y H, YU B.Vector Cooperative Response Surface Method for Structural Reliability Analysis Based on Approximately Equivalent Probability Transformations[J]. Engineering Mechanics, 2014, 31(7): 185-191. [38] 唐小松, 李典庆, 周创兵, 等. 不完备概率信息条件下边坡可靠度分析方法[J]. 岩土工程学报, 2013, 35(6): 1027-1034. TANG X S, LI D Q, ZHOU C B, et al.Reliability Analysis of Slopes with Incomplete Probability Information[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1027-1034. [39] 赵国藩. 结构可靠度的实用分析方法[J]. 建筑结构学报, 1984, 5(3): 1-10. ZHAO G F.A Practical Method for Structural Reliability Analysis[J]. Journal of Building Structures, 1984, 5(3): 1-10. [40] PALOHEIMO E, HANNUS M.Structural Design Based on Weighted Fractiles[J]. Journal of the Structural Division, 1974, 100(7): 1367-1378. [41] ROSENBLATT M.Remarks on a Multivariate Transformation[J]. The Annals of Mathematical Statistics, 1952, 23(3): 470-472. [42] 洪昌华, 龚晓南. 相关情况下Hasofer-Lind可靠度指标的求解[J]. 岩土力学, 2000, 21(1): 68-71. HONG C H, GONG X N.Hasofer-Lind Reliability Index Calculation under Correlation Conditions[J]. Rock and Soil Mechanics, 2000, 21(1): 68-71. [43] CHEN C, WU W C, ZHANG B M, et al.Correlated Probabilistic Load Flow Using a Point Estimate Method with Nataf Transformation[J]. International Journal of Electrical Power & Energy Systems, 2015, 65: 325-333. [44] KARL B.Asymptotic Approximations for Multinormal Integrals[J]. Journal of Engineering Mechanics, 1984, 110(3): 357-366. [45] 张明. 结构可靠度分析——方法与程序[M]. 北京: 科学出版社, 2009. ZHANG M.Structural Reliability Analysis: methods and Procedures[M]. Beijing: Science Press, 2009. [46] TVEDT L.Distribution of Quadratic Forms in Normal Space—Application to Structural Reliability[J]. Journal of Engineering Mechanics, 1990, 116(6): 1183-1197. [47] KÖYLÜOǦLU H U, NIELSEN S R K. New Approximations for SORM Integrals[J]. Structural Safety, 1994, 13(4): 235-246. [48] DER KIUREGHIAN A, DE STEFANO M.Efficient Algorithm for Second-Order Reliability Analysis[J]. Journal of Engineering Mechanics, 1991, 117(12): 2904-2923. [49] ZHANG J F, DU X P.A Second-Order Reliability Method with First-Order Efficiency[J]. Journal of Mechanical Design, 2010, 132(10): 101006. [50] HU Z L, DU X P.Saddlepoint Approximation Reliability Method for Quadratic Functions in Normal Variables[J]. Structural Safety, 2018, 71: 24-32. [51] ROSENBLUETH E.Point Estimates for Probability Moments[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(10): 3812-3814. [52] HONG H P.An Efficient Point Estimate Method for Probabilistic Analysis[J]. Reliability Engineering & System Safety, 1998, 59(3): 261-267. [53] ZHAO Y G, ONO T.Moment Methods for Structural Reliability[J]. Structural Safety, 2001, 23(1): 47-75. [54] LIN Z H, LI W Y.Restrictions of Point Estimate Methods and Remedy[J]. Reliability Engineering & System Safety, 2013, 111: 106-111. [55] NAPA-GARCÍA G F, BECK A T, CELESTINO T B. Reliability Analyses of Underground Openings with the Point Estimate Method[J]. Tunnelling and Underground Space Technology, 2017, 64: 154-163. [56] ZHANG Y, LAM J S L. A Copula Approach in the Point Estimate Method for Reliability Engineering[J]. Quality and Reliability Engineering International, 2016, 32(4): 1501-1508. [57] MAREK P, BROZZETTI J, GUSTAR M, et al.Probabilistic Assessment of Structures Using Monte Carlo Simulations[J]. Applied Mechanics Reviews, 2002, 55(2): B31. [58] WANG Y, CAO Z J, AU S K.Practical Reliability Analysis of Slope Stability by Advanced Monte Carlo Simulations in a Spreadsheet[J]. Canadian Geotechnical Journal, 2011, 48(1): 162-172. [59] RACKWITZ R.Reliability Analysis—A Review and Some Perspectives[J]. Structural Safety, 2001, 23(4): 365-395. [60] ENGELUND S, RACKWITZ R.A Benchmark Study on Importance Sampling Techniques in Structural Reliability[J]. Structural Safety, 1993, 12(4): 255-276. [61] IBRAHIM Y.Observations on Applications of Importance Sampling in Structural Reliability Analysis[J]. Structural Safety, 1991, 9(4): 269-281. [62] ZHAO Y H, WANG Z Y.Subset Simulation with Adaptable Intermediate Failure Probability for Robust Reliability Analysis: An Unsupervised Learning-Based Approach[J]. Structural and Multidisciplinary Optimization, 2022, 65(6): 172. [63] CHEN J H, CHEN Z C, XU Y, et al.Efficient Reliability Analysis Combining Kriging and Subset Simulation with Two-Stage Convergence Criterion[J]. Reliability Engineering & System Safety, 2021, 214: 107737. [64] PAPAIOANNOU I, STRAUB D.Combination Line Sampling for Structural Reliability Analysis[J]. Structural Safety, 2021, 88: 102025. [65] WEI N, LU Z Z, HU Y S.Stochastic Collocation Enhanced Line Sampling Method for Reliability Analysis[J]. Reliability Engineering & System Safety, 2023, 240: 109552. [66] YE N, LU Z Z, ZHANG X B, et al.Metamodel-Based Directional Importance Sampling for Structural Reliability Analysis[J]. IEEE Transactions on Reliability, 2024, 73(1): 463-477. [67] ZHANG X B, LU Z Z, CHENG K.AK-DS: An Adaptive Kriging-Based Directional Sampling Method for Reliability Analysis[J]. Mechanical Systems and Signal Processing, 2021, 156: 107610. [68] WANG Y Z, XIE B, SHIYUAN E.Adaptive Relevance Vector Machine Combined with Markov-Chain-Based Importance Sampling for Reliability Analysis[J]. Reliability Engineering & System Safety, 2022, 220: 108287. [69] XIANG Z L, HE X H, ZOU Y F, et al.An Importance Sampling Method for Structural Reliability Analysis Based on Interpretable Deep Generative Network[J]. Engineering with Computers, 2024, 40(1): 367-380. [70] WANG J, CAO R N, SUN Z L.Importance Sampling for Time-Variant Reliability Analysis[J]. IEEE Access, 2021, 9: 20933-20941. [71] ALI SHAYANFAR M, ALI BARKHORDARI M, BARKHORI M, et al.An Adaptive Directional Importance Sampling Method for Structural Reliability Analysis[J]. Structural Safety, 2018, 70: 14-20. [72] ZHANG X B, LU Z Z, CHENG K.Cross-Entropy-Based Directional Importance Sampling with von Mises-Fisher Mixture Model for Reliability Analysis[J]. Reliability Engineering & System Safety, 2022, 220: 108306. [73] GUO Q, LIU Y S, CHEN B Q, et al.An Active Learning Kriging Model Combined with Directional Importance Sampling Method for Efficient Reliability Analysis[J]. Probabilistic Engineering Mechanics, 2020, 60: 103054. [74] NI P H, LI J, HAO H.Reliability Analysis of Bridges under Different Loads Using Polynomial Chaos and Subset Simulation[J]. Earthquake Engineering and Resilience, 2023, 2(2): 163-179. [75] XIE B, WANG Y Z, ZHU Y Y, et al.A Novel Reliability Analysis Method Combining Adaptive Relevance Vector Machine and Subset Simulation for Small Failure Probability[J]. Structural and Multidisciplinary Optimization, 2023, 66(3): 47. [76] RASHKI M, FAES M G R, WEI P F, et al. Asymptotic Subset Simulation: An Efficient Extrapolation Tool for Small Probabilities Approximation[J]. Reliability Engineering & System Safety, 2025, 260: 111034. [77] YUAN X K, ZHENG Z X, ZHANG B Q.Augmented Line Sampling for Approximation of Failure Probability Function in Reliability-Based Analysis[J]. Applied Mathematical Modelling, 2020, 80: 895-910. [78] ZHANG X B, LU Z Z, YUN W Y, et al.Line Sampling-Based Local and Global Reliability Sensitivity Analysis[J]. Structural and Multidisciplinary Optimization, 2020, 61(1): 267-281. [79] YAMAUCHI A, TANIMOTO J, HAGISHIMA A.An Analysis of Network Reciprocity in Prisoner’s Dilemma Games Using Full Factorial Designs of Experiment[J]. Biosystems, 2011, 103(1): 85-92. [80] GUNST R F, MASON R L.Fractional Factorial Design[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2009, 1(2): 234-244. [81] ASGHAR A, RAMAN A A A, DAUD W M A W. A Comparison of Central Composite Design and Taguchi Method for Optimizing Fenton Process[J]. The Scientific World Journal, 2014, 2014(1): 869120. [82] FERREIRA S L C, BRUNS R E, FERREIRA H S, et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods[J]. Analytica Chimica Acta, 2007, 597(2): 179-186. [83] ASLAN N, CEBECI Y.Application of Box-Behnken Design and Response Surface Methodology for Modeling of Some Turkish Coals[J]. Fuel, 2007, 86(1/2): 90-97. [84] VIANA F A C. A Tutorial on Latin Hypercube Design of Experiments[J]. Quality and Reliability Engineering International, 2016, 32(5): 1975-1985. [85] SIVAKUMAR BABU G L, SRIVASTAVA A. Reliability Analysis of Allowable Pressure on Shallow Foundation Using Response Surface Method[J]. Computers and Geotechnics, 2007, 34(3): 187-194. [86] LI D Q, ZHENG D, CAO Z J, et al.Response Surface Methods for Slope Reliability Analysis: Review and Comparison[J]. Engineering Geology, 2016, 203: 3-14. [87] FARAVELLI L.Response-Surface Approach for Reliability Analysis[J]. Journal of Engineering Mechanics, 1989, 115(12): 2763-2781. [88] CHENG J, LI Q S.Reliability Analysis of Structures Using Artificial Neural Network Based Genetic Algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45/46/47/48): 3742-3750. [89] CHOJACZYK A A, TEIXEIRA A P, NEVES L C, et al.Review and Application of Artificial Neural Networks Models in Reliability Analysis of Steel Structures[J]. Structural Safety, 2015, 52: 78-89. [90] CHEN Z Z, QIU H B, GAO L, et al.A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model[J]. Structural and Multidisciplinary Optimization, 2014, 49(3): 401-416. [91] WANG J, SUN Z L, CAO R N, et al.An Efficient and Robust Adaptive Kriging for Structural Reliability Analysis[J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 3189-3204. [92] MARELLI S, SUDRET B.An Active-Learning Algorithm that Combines Sparse Polynomial Chaos Expansions and Bootstrap for Structural Reliability Analysis[J]. Structural Safety, 2018, 75: 67-74. [93] HE W X, ZENG Y, LI G.An Adaptive Polynomial Chaos Expansion for High-Dimensional Reliability Analysis[J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 2051-2067. [94] JING Z, CHEN J Q, LI X.RBF-GA: An Adaptive Radial Basis Function Metamodeling with Genetic Algorithm for Structural Reliability Analysis[J]. Reliability Engineering & System Safety, 2019, 189: 42-57. [95] CHAU M Q, HAN X, BAI Y C, et al.A Structural Reliability Analysis Method Based on Radial Basis Function[J]. Computers, Materials & Continua, 2012, 27(2): 128-142. [96] DAS CHAGAS MOURA M, ZIO E, LINS I D, et al. Failure and Reliability Prediction by Support Vector Machines Regression of Time Series Data[J]. Reliability Engineering & System Safety, 2011, 96(11): 1527-1534. [97] ROY A, CHAKRABORTY S.Support Vector Machine in Structural Reliability Analysis: A Review[J]. Reliability Engineering & System Safety, 2023, 233: 109126. [98] CHEN C, LIU Y, SUN X F, et al.Reliability Analysis Using Deep Learning[C]// Proceedings of 38th Computers and Information in Engineering Conference. Quebec City: American Society of Mechanical Engineers, 2018. [99] BOSIO A, BERNARDI P, RUOSPO A, et al.A Reliability Analysis of a Deep Neural Network[C]// Proceedings of 2019 IEEE Latin American Test Symposium (LATS). Santiago: [s.n.], 2019. [100] HILL W J, HUNTER W G.A Review of Response Surface Methodology: A Literature Survey[J]. Technometrics, 1966, 8(4): 571. [101] YANG R G, LI W Z, LIU Y Z.A Novel Response Surface Method for Structural Reliability[J]. AIP Advances, 2022, 12(1): 015205. [102] XIA Y, KONG W Z, YU Y Y, et al.Improved Response Surface Method Based on Linear Gradient Iterative Criterion[J]. Advances in Civil Engineering, 2023, 2023(1): 6360796. [103] FANG P Y, LI S H, GUO X, et al.Response Surface Method Based on Uniform Design and Weighted Least Squares for Non-Probabilistic Reliability Analysis[J]. International Journal for Numerical Methods in Engineering, 2020, 121(18): 4050-4069. [104] SHAFIQ A, ÇOLAK A B, AHMAD LONE S, et al.Reliability Modeling and Analysis of Mixture of Exponential Distributions Using Artificial Neural Network[J]. Mathematical Methods in the Applied Sciences, 2024, 47(5): 3308-3328. [105] Gomes Wellison José de Santana. Shallow and Deep Artificial Neural Networks for Structural Reliability Analysis[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2020, 6(4): 041006. [106] YANG Z, PAK U, KWON C.Vibration Reliability Analysis of Drum Brake Using the Artificial Neural Network and Important Sampling Method[J]. Complexity, 2021, 2021(1): 5517634. [107] MENG D B, YANG S Y, DE JESUS A M P, et al. A Novel Hybrid Adaptive Kriging and Water Cycle Algorithm for Reliability-Based Design and Optimization Strategy: Application in Offshore Wind Turbine Monopile[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 412: 116083. [108] WANG T, LI Z L, FAN W L, et al.Structural Reliability Assessment Based on Enhanced Conjugate Unscented Transformation and Improved Maximum Entropy Method[J]. Journal of Structural Engineering, 2021, 147(12): 04021213. [109] ZHANG W, ZHAO Z Y, XU H W, et al.AK-Gibbs: An Active Learning Kriging Model Based on Gibbs Importance Sampling Algorithm for Small Failure Probabilities[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 426: 116992. [110] YAN Y T, WANG J, ZHANG Y B, et al.Kriging Model for Time-Dependent Reliability: Accuracy Measure and Efficient Time-Dependent Reliability Analysis Method[J]. IEEE Access, 2020, 8: 172362-172378. [111] WU H, ZHU Z F, DU X P.System Reliability Analysis with Autocorrelated Kriging Predictions[J]. Journal of Mechanical Design, 2020, 142(10): 101702. [112] YU S, WANG Z L, LI Y.Time and Space-Variant System Reliability Analysis through Adaptive Kriging and Weighted Sampling[J]. Mechanical Systems and Signal Processing, 2022, 166: 108443. [113] LUO C Q, ZHU S P, KESHTEGAR B, et al.Active Kriging-Based Conjugate First-Order Reliability Method for Highly Efficient Structural Reliability Analysis Using Resample Strategy[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 423: 116863. [114] FANG Y C, WANG Y J, SHA J L, et al.Reliability Analysis of Mechanisms with Mixed Uncertainties Using Polynomial Chaos Expansion[J]. Quality and Reliability Engineering International, 2023, 39(4): 1248-1268. [115] ZHOU Y C, LU Z Z, YUN W Y.Active Sparse Polynomial Chaos Expansion for System Reliability Analysis[J]. Reliability Engineering & System Safety, 2020, 202: 107025. [116] ZHANG J, GONG W J, YUE X X, et al.Efficient Reliability Analysis Using Prediction-Oriented Active Sparse Polynomial Chaos Expansion[J]. Reliability Engineering & System Safety, 2022, 228: 108749. [117] LUO C Q, ZHU S P, KESHTEGAR B, et al.An Enhanced Uniform Simulation Approach Coupled with SVR for Efficient Structural Reliability Analysis[J]. Reliability Engineering & System Safety, 2023, 237: 109377. [118] DU W Y, MA J, YUE P, et al.An Efficient Reliability Method with Multiple Shape Parameters Based on Radial Basis Function[J]. Applied Sciences, 2022, 12(19): 9689. [119] LI G S, CAI W W, TIAN L, et al.Efficient Augmented Radial Basis Function for Reliability Analysis with Dynamic Importance Sampling[J]. Engineering Optimization, 2025, 57(6): 1486-1505. [120] CHEN J Y, FENG Y W, TENG D, et al.Support Vector Machine-Based Similarity Selection Method for Structural Transient Reliability Analysis[J]. Reliability Engineering & System Safety, 2022, 223: 108513. [121] PEPPER N, CRESPO L, MONTOMOLI F.Adaptive Learning for Reliability Analysis Using Support Vector Machines[J]. Reliability Engineering & System Safety, 2022, 226: 108635. [122] LI M Y, WANG Z Q.Deep Learning for High-Dimensional Reliability Analysis[J]. Mechanical Systems and Signal Processing, 2020, 139: 106399. [123] ZHOU T, PENG Y B.Efficient Reliability Analysis Based on Deep Learning-Enhanced Surrogate Modelling and Probability Density Evolution Method[J]. Mechanical Systems and Signal Processing, 2022, 162: 108064. [124] SHI Y, BEER M.Physics-Informed Neural Network Classification Framework for Reliability Analysis[J]. Expert Systems with Applications, 2024, 258: 125207. [125] BAI Z W, SONG S F.Structural Reliability Analysis Based on Neural Networks with Physics-Informed Training Samples[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107157.