基于可公度法的航材故障预测

张作刚,赵明

(海军航空工程学院 青岛校区, 川东 青岛 266041)

摘要:介绍了可公度性的概念和可公度信息预测理论。应用可公度信息预测理论,以故障时间窗口期为研究对象,对航材故障预测进行了初步探索,进而建立了一种较为实用的预测模型,并且给出了具体算例,验证所建模型的科学性和有效性。通过与指数平滑法预测模型对比可看到可公度预测模型精度更高且计算模型更为简单,为航材故障次数预测提供了一种解决方案。进而可以更好地应用在实践当中,提高航材管理水平,保障飞行任务的完成。

关键词:可公度信息;时间窗口期;故障预测中图分类号: TP18; V25 文献标识码: A 文章编号: 1672-9242(2012)05-0118-04

Fault Forecast of Air Materiel Spare Parts Based on Commonsurable Method

ZHANG Zuo-gang, ZHAO Ming

(Qingdao Branch of Naval Aeronautical Engineering Academy, Qingdao 266041, China)

Abstract: The concept of commensurability and the prediction theory of commonsurable information were introduced. The fault forecast of air materiel spare parts was studied with the object of the time window of faults based on the prediction theory of commonsurable information. A practical prediction model was established and the scientificity and validity of the model was verified with calculation examples. Commensurability prediction model was compared with exponential smoothing model. The result showed that commensurability prediction model is of higher precision and the calculation model is simpler. The purpose was to provide a feasible method for the fault prediction of air materiel spare parts.

Key words: commonsurable information; time window; fault forecast

1 可公度法基本原理

可公度性这一概念是由翁文波先生根据天文学中的概念引申而来,并且作为信息预测的一种方法 创造性地在预测学中得到了应用。这一方法表达方 式形象简单,但是其内部却蕴含深刻的思想。

关于事物存在的周期性问题已经开展了很多广泛、深入的研究和应用。可公度性表述了自然界事物之间存在的一种秩序,是一种信息系,是一种现象周期性的客观外在反映,并且能够很好地刻划事物周期性扩张。目前,国内外学者对可公度性的研究

收稿日期: 2012-06-13

作者简介: 张作刚(1961一),男,山东高密人,硕士,教授,研究方向为装备、器材勤务技术。

和应用仍然不够广泛和深入,而且缺乏严谨的数学推导和证明,但是有些学者于信息研究中使用了可公度性方法,将在理解信息、自然数、整数、有序性的理论意义时达到一个新的水平。

可公度性的一般表达式[[为:

$$x_i = \sum_{i=1}^{l} (I_j x_{ij}) + \varepsilon_0 \tag{1}$$

式中: $ij \in \{i\}$,且 $ij \neq i$,即ij为下标集 $\{i\} = \{1,2,3,\cdots,n\}$ 中与i不同的任意元素; I_i 为整数,一般取为 ± 1 ;l为可公度元数; ϵ 。为预先确定好的可行性临界值(偏差)。式(1)可以概述为:位于数据集 $\{x\}$ 中的某一元素 x_i 可在一定误差 ϵ 。范围内,由数据集内除 x_i 外的其他l个元素进行线性组合得到。

对于可公度集 $\{x\}$ = $\{x_1,x_2,\cdots,x_n\}$ 的任意元素 x_i 来 说可能有许多等式,如果对于数据集中的某一确定 的元素 x_i ,存在 m个可公度式(即可公度数为 m),可以认为这些可公度式的出现不是偶然的现象。可公度数 m是关于分析数据集可公度信息强弱程度的一个重要指标 $[^2]$ 。

2 基于可公度法的航材故障次数预测模型

航材故障次数的历史数据经过预处理以后,根据可公度理论,建立航材故障次数预测基本模型。 文中建立了三元可公度预测模型。

若航材历年故障时间数据集设为 $Q=\{Q_1,Q_2,\cdots,Q_k\}$,其中k为数据集中所包含的元素个数,经过数据预处理后得到故障时间窗口数据集 $Q'=\{Q'_1,Q'_2,\cdots,Q'_k\}$,数据预处理的方法如下:以故障首发时间为分析基点,定义为0,预测以天为基本单位,故障时间窗口期可以定义为距离首次发生故障的天数[3]。

三元可公度航材故障次数预测模型如式(2)所示:

$$\begin{cases} Q_{1}^{'} = \sum_{j=1}^{3} I_{j} x_{ij,1} + \varepsilon_{1} \\ Q_{2}^{'} = \sum_{j=1}^{3} I_{j} x_{ij,2} + \varepsilon_{2} \\ Q_{i}^{'} = \sum_{j=1}^{3} I_{j} x_{ij,m} + \varepsilon_{m} \end{cases}$$
(2)

式中: $I_1 = I_2 = 1, I_3 = -1; m > 1$,满足 $\max(|\varepsilon_1|, |\varepsilon_2|, \dots, |\varepsilon_m| = 1) \le \varepsilon_0$, $\varepsilon_0 = 1$ 。若历史数据集 Q' 的可

公度数平均值为 \overline{m} ,预测结果的可公度数为 m_p ,则进行预测时,选择 $\frac{m_p}{\overline{m}} > 50\%$ 的预测结果方可满足要求 $^{[3]}$ 。

3 实例分析

以航材 A 为例, 2001—2011年发生故障的时间 见表 1。

航材A的故障时间窗口可由公式(3)算得:

(年份-2001) × 365-8+
$$\sum_{i=1}^{n-1} M_i \times D_i + d_n$$
 (3)

式中: $M_i(M_0=0)$ 为故障发生前的第i个月份; D_i ($D_0=0$)为第i个月份的天数; d_n 为故障发生月份内已过去的天数;n为故障发生的月份数, $n=1,2,\cdots,12$; $i=0,1,\cdots,n$ 。

航材A故障时间窗口,见表2。

根据预测模型对各故障时间窗口期的频度数计算可知,三元可公度频数均值 \bar{m} =609.6,2011年的故障时间窗口范围是[3643,4007],在这个范围内出现的频度数 m_p ,且满足条件 $\frac{m_p}{\bar{m}}>50%$ 的故障时间窗口个数为20,故预测2011年发生的故障次数为20。2011年航材A真实发生故障次数为21,预测值与真实值仅差1。

4 精度分析

通过2007—2011年指数平滑法和可公度法两种模型的预测精度分析(见表3)可以看出,后者的预测精度明显高于前者,且可公度法模型均方根误差仅为0.5657,能够很好地满足工程实践的要求。

5 结论

以可公度信息预测理论为基础,把航材的故障时间窗口期作为研究对象,对航材故障次数预测进行了初步探索,进而建立了三元可公度预测模型,并以某种具体航材的故障数据作为实例验证。通过与指数平滑法预测模型的精度分析对比,可以看到可公度法模型有较好的预测精度,能够较好地应

表1 航材A故障时间

Table 1 Air materiel spare parts fault time

序号	年份										
11. 2	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
1	1月8日	1月6日	2月13日	1月17日	2月4日	1月19日	1月7日	1月8日	1月14日	1月4日	1月4日
2	1月23日	2月4日	2月20日	1月25日	2月22日	2月15日	1月31日	2月3日	2月2日	2月7日	1月9日
3	2月11日	2月22日	3月16日	2月6日	3月6日	2月26日	2月3日	2月4日	2月24日	3月10日	1月27日
4	3月24日	3月12日	3月24日	2月17日	3月18日	2月27日	2月26日	2月20日	3月14日	3月18日	1月31日
5	5月11日	4月26日	4月20日	2月23日	3月27日	3月9日	3月6日	4月11日	3月20日	3月26日	2月19日
6	5月26日	4月27日	4月26日	3月01日	5月16日	3月21日	4月3日	5月7日	3月21日	5月7日	3月9日
7	6月7日	5月17日	6月22日	4月22日	7月22日	5月19日	4月4日	5月31日	4月9日	5月25日	3月26日
8	7月23日	5月20日	6月29日	4月26日	7月29日	6月8日	4月17日	6月3日	4月10日	6月18日	4月24日
9	8月9日	7月11日	7月16日	5月16日	8月23日	6月17日	4月18日	6月29日	4月18日	7月18日	5月9日
10	8月22日	8月25日	7月29日	6月13日	10月23日	6月28日	5月13日	7月9日	7月3日	7月21日	6月8日
11	9月16日	10月23日	9月12日	6月18日	11月12日	7月12日	5月14日	7月14日	7月4日	8月7日	6月22日
12	9月28日	11月26日	10月12日	6月26日	12月13日	7月29日	6月18日	10月7日	8月11日	10月9日	8月6日
13	10月26日	11月29日	12月03日	8月11日		8月11日	7月11日	10月8日	8月17日	10月18日	8月10日
14	11月17日	12月8日		8月27日		8月26日	7月25日	10月20日	8月24日	10月27日	8月20日
15	12月2日			9月13日		8月29日	8月8日	11月9日	8月25日	11月4日	8月29日
16	12月26日			11月22日		9月13日	9月24日	12月10日	9月7日	11月23日	9月6日
17				11月29日		9月22日	9月26日	12月23日	9月10日	12月28日	9月23日
18				11月30日		10月12日	12月03日	12月24日	10月20日		11月9日
19				12月27日		11月3日	12月4日		10月23日		12月5日
20						11月26日			10月24日		12月7日
21						12月9日			12月9日		12月17日
22						12月23日					

表2 航材A故障时间窗口

Table 2 Air materiel spare parts fault time window

序号	年份											
厅 与	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	
1	0	363	766	1104	1487	1836	2189	2555	2926	3281	3646	
2	15	392	773	1112	1505	1863	2213	2581	2945	3315	3651	
3	34	410	797	1124	1517	1874	2216	2582	2967	3347	3669	
4	75	429	804	1135	1529	1875	2239	2598	2985	3355	3673	
5	123	474	832	1141	1538	1885	2247	2649	2991	3363	3692	
6	138	475	838	1148	1588	1897	2275	2675	2992	3405	3710	
7	150	495	895	1200	1655	1956	2276	2699	3011	3423	3727	
8	196	498	902	1204	1662	1976	2289	2702	3012	3447	3756	
9	213	550	919	1224	1687	1985	2290	2728	3020	3477	3771	
10	226	595	932	1252	1748	1996	2315	2738	3096	3480	3801	
11	251	654	977	1257	1768	2010	2316	2743	3097	3497	3815	
12	263	688	1007	1265	1799	2027	2351	2828	3135	3560	3860	
13	291	691	1059	1311		2040	2374	2829	3141	3569	3864	
14	313	700		1327		2055	2388	2841	3148	3578	3874	
15	328			1344		2058	2402	2861	3149	3586	3883	
16	352			1383		2073	2449	2892	3162	3605	3891	
17				1420		2082	2451	2905	3165	3640	3908	
18				1421		2102	2519	2906	3175		3955	
19				1449		2124	2520		3208		3981	
20						2147			3209		3983	
21						2160			3255		3993	
22						2174						

表3 预测模型精度对比

Table 3 Precision comparison of forecast models

年份	故障次数	自适应指数平	可公度法模	自适应指数平滑	可公度法模型	自适应指数平滑	可公度法模型
十仞	真实值	滑模型预测值	型预测值	模型绝对误差	绝对误差	模型均方根误差	均方根误差
2007	19	19.6188	20	0.6188	1		
2008	18	19.5595	17	1.5595	1		
2009	21	19.3612	20	1.6388	1	0.7791	0.5657
2010	17	19.6961	19	2.6961	2		
2011	21	19.4491	20	1.5509	1		

用于航材故障次数预测的实践之中,为航材保障提供依据。

- [2] 龙小霞,延军平,孙虎.基于可公度方法的川滇地区地震趋势研究[J].灾害学,2006(3):81—84.
- [3] 文守逊,黄文明. 基于RBF模型和可公度法的股指时间窗口期研究[J]. 统计与决策,2011(22):149—151.

参考文献:

[1] 翁文波. 预测学[M]. 北京:石油工业出版社,1996.

(上接第105页)

保养周期应调整为预定周期的0.6倍。例如,某型推 土机在正常作业环境下的一、二、三级保养周期分别 为发动机运转200,600,1800 h,则该型推土机在该 作业环境下的一、二、三级保养周期应分别调整为发 动机运转120,360,1080 h。

4 结论

通过综合考虑濒海环境下影响工程装备作业性能的各种主要因素及其影响规律,在大量数据的支持下分别建立了模糊隶属度函数,在此基础上建立了模糊综合评价数学模型,利用该模型确定了影响因素对机械保养周期的综合影响系数,并据此适当调整了工程装备在濒海环境下的保养周期,有利于工程装备保持良好的技术状态和较长的使用期限。实例验证表明,计算结果符合实际情况,评价过程有效抑制了人为因素的干扰。值得注意的是,若考虑更多、属于不同层次的影响因素,应分更多层次进行

模糊综合评价,需要建立更为详细精确的隶属度函数,并采用更科学合理的计算方法,将主观因素的影响降到最小。

参考文献:

- [1] 张则敏. 导弹装备在沿海地区防腐蚀措施[J]. 装备环境工程,2004,1(2):81—84.
- [2] 徐国葆. 我国沿海大气中盐雾含量与分布[J]. 环境技术, 1994(3):3—7.
- [3] 赵卫红. 福建省城市酸性降水特征及变化趋势[J]. 环境科学与技术,2006,29(9):41—43.
- [4] 郝海, 踪家峰. 系统分析与评价方法[M]. 北京: 经济科学出版社, 2007: 152—184.
- [5] 谢季坚,刘承平. 模糊数学方法及应用[M]. 武汉:华中科技大学出版社,2006:28—35.
- [6] 鲁冬林, 谭东东. 基于模糊综合评价的高原工程机械保养周期确定方法[J]. 建筑机械, 2009(12):99—100.
- [7] 舒服华. 工程机械维修质量模糊综合评价方法及其改进 [J]. 工程机械,2007,38(3):57.