铝合金微弧氧化技术应用研究

杨钿,周隆先

(总装备部重庆军事代表局,重庆 400060)

摘要:目的研究铝合金微弧氧化技术在产品三防方面的应用。方法 选取四种不同牌号的常用 铝合金结构件材料进行微弧氧化处理,并通过各种检测手段测定铝合金微弧氧化膜层的成分及形 貌、硬度及耐磨、耐腐蚀等性能指标,并与硬质阳极氧化技术作对比。结果 微弧氧化膜层厚度为 20~120 μm,氧化膜致密层硬度(HV)>900,致密层磨损率<10⁻⁴ mm³/(N·m),盐雾试验时间> 96 h,湿热试验时间>10个周期,膜层性能优于硬质阳极氧化膜。结论 微弧氧化技术能大大提高 铝合金的耐磨和耐腐蚀性能,可应用于提升产品三防性能。

关键词:铝合金;微弧氧化;性能

DOI: 10.7643/issn.1672-9242.2013.06.028

中图分类号: TG174.4 文献标识码: A

文章编号: 1672-9242(2013)06-0131-05

Study on Application of Aluminum Alloy with Micro Arc Oxidation

YANG Tian, ZHOU Long-xian

(Military Representative Bureau of General Equipment Department in Chongqing Region, Chongqing 400060, China)

ABSTRACT: Objective To study the aluminum alloy Micro Arc Oxidation (MAO) technology in the application of product protection in three aspects. **Methods** Four different brands of commonly used aluminum alloy structure materials were selected for MAO treatment, and the performance indices of the MAO coatings of the aluminum alloy, such as composition and appearance, hardness and wear resistance and corrosion resistance, were determined through a variety of detection means, and were compared with those of the hard anodic oxidation technology. **Results** the thickness of the MAO film layer was $20\sim120 \ \mu$ m, the hardness (HV) of the dense oxide film layer was greater than 900, the abrasion resistance of dense layer and wear rate were less than $10^{-4} \text{ mm}^3/\text{N} \cdot \text{m}$, the salt spray test time was more than 96 h, and the humid heat test time was more than 10 cycles, indicating that the performance was better than that of

收稿日期: 2013-03-17; 修订日期: 2013-07-15

Received: 2013–03–17; **Revised:** 2013–07–15

作者简介:杨钿(1983一),女,湖北鄂州人,工学学士,主要研究方向为机械产品研制、生产和监造。

Biography: YANG Tian(1983—), Female, from Ezhou, Hubei, B.Eng., Research focus: development, production and supervision of mechanical products.

the hard anodic oxidation film membrane layer. **Conclusion** The MAO technology can greatly improve the abrasion resistance and corrosion resistance of aluminum alloy, and can thus be applied to improve the product performance in the three aspects of prevention.

KEY WORDS: aluminum alloy; micro arc oxidation; property

微弧氧化技术是在传统的液相电化学氧化反应 的基础上发展起来的。它将工作区域引入到高压放 电区域,使金属表面处在微弧形成的等离子体高温 (约 3000 K)、高压(20~50 MPa)作用下,在金属表面 原位生成坚硬、致密的陶瓷氧化膜,如铝合金表面微 弧氧化膜主要由 α -Al₂O₃, γ -Al₂O₃相组成,所得的 氧化膜硬度高、与基体结合牢固、结构致密,大大提 高了有色金属的耐磨损、耐腐蚀、抗高温冲击及电特 性等多种性能^{II-5I}。

通过对不同牌号的铝合金进行微弧氧化处理, 了解并掌握了铝合金微弧氧化技术的工艺特点,包 括设备性能特点、溶液体系、处理参数等;并通过各 种检测手段测定了铝合金微弧氧化膜层的性能指 标,提升了产品的三防性能。

1 实验方法

1.1 材料选择

日常使用的铝合金结构件材料主要有LY12, LD31,LF6,LF21。本研究的对象为上述四种铝合金, 同时对LY12硬质阳极氧化样件进行了对比分析。

1.2 处理参数

微弧氧化和硬质阳极氧化工艺特点比较见表 1。

表1 微弧氧化和硬质阳极氧化工艺比

Table 1 Process comparison of Micro Arc Oxidation and Hard Anodic Oxidation

	微弧氧化	硬质阳极氧化
电压、电流	高压(约600 V)、电流密度大(约10 A/dm ²)	低压(约50V)、电流密度较小(约1A/dm ²)
工艺流程	去油→微弧氧化	碱蚀→酸洗→清洗→阳极氧化→封孔
溶液性质	碱性溶液	酸性溶液
工作温度	<45 °C	<9 °C
氧化类型	化学氧化、电化学氧化、等离子体氧化	化学氧化、电化学氧化
氧化膜相结构	晶态氧化物(α-Al ₂ O ₃ ,γ-Al ₂ O ₃)	无定形相

微弧氧化设备采用北京师范大学研制的型号为 WHYH-40设备,功率为40kW。设备外观及氧化过 程如图1所示。从图1b中可见,在氧化过程中,工件 表面产生弧光,形成等离子体微弧。

图 1 WHYH-40 微弧氧化设备 Fig.1 Equipment of WHYH-40 Micro Arc Oxidation

微弧氧化设备采用双极性大功率脉冲电源,正

负电压可独立调节,氧化溶液采用硅酸盐碱性溶液 体系。不同牌号铝合金的微弧氧化处理参数及膜层 厚度见表2,用于对比的LY12硬质阳极氧化样件膜 层厚度约为50μm。

2 实验结果与分析

2.1 膜层形貌及成分分析

铝合金微弧氧化膜层呈灰白色,随基体型号及 膜层厚度略有差别,如图2a所示。微弧氧化膜层分 为疏松层和致密层,如图2b所示。

由图 2b 可见, 微弧氧化膜层的疏松层有许多孔 洞, 这是在氧化过程中微弧放电形成的熔融坑急速

表2 微弧氧化处理参数

Table 2 Parameters of Micro Arc Oxidation

始旦	刑旦			样件处理条件			台
细石	至夕	正电压/V	负电压/V	设备	时间/min	表面积/dm ²	芯序度/μm
1-1	LY12试验件	500 ~ 530	160 ~ 200	WHYH-40	40	0.3	24
1–2	LY12试验件	500 ~ 530	160 ~ 200	WHYH-40	75	0.3	48
1-3	LY12试验件	500 ~ 530	160 ~ 200	WHYH-40	90	0.3	88
2-1	LD31试验件	500 ~ 530	160 ~ 200	WHYH-40	30	0.3	20
2-2	LD31试验件	500 ~ 530	160 ~ 200	WHYH-40	60	0.3	55
2-3	LD31试验件	500 ~ 530	160 ~ 200	WHYH-40	90	0.3	110
3-1	LF6试验件	500 ~ 530	160 ~ 200	WHYH-40	40	0.3	35
3-2	LF6试验件	500 ~ 530	160 ~ 200	WHYH-40	75	0.3	85
3-3	LF6试验件	500 ~ 530	160 ~ 200	WHYH-40	90	0.3	120
4-1	LF21试验件	500 ~ 530	160 ~ 200	WHYH-40	45	0.3	29
4-2	LF21试验件	500 ~ 530	160 ~ 200	WHYH-40	75	0.3	70
4-3	LF21试验件	500 ~ 530	160 ~ 200	WHYH-40	120	0.3	105

a 膜层外观

b 膜层横断面结构

图 2 微弧氧化膜层形貌 Fig.2 Morphology of the Micro Arc Oxidation film

冷却后形成的,而致密层则孔洞很少。

经过X射线衍射分析可知,微弧氧化膜层主要 由 α -Al₂O₃, γ -Al₂O₃相组成。从已有的研究可知, 氧化膜疏松层中含 γ -Al₂O₃相较多,而致密层中含 α -Al₂O₃相较多。 γ -Al₂O₃相属于亚稳态氧化铝相, 其硬度低于热力学稳定相—— α -Al₂O₃相。

2.2 氧化膜硬度及耐磨性能分析

从铝合金微弧氧化膜膜层形貌及成分分析可 知,氧化膜由外层多孔疏松层及内层致密层组成。 氧化膜疏松层中含γ-Al₂O₃相较多,而致密层中含 α-Al₂O₃相较多。γ-Al₂O₃相硬度低于α-Al₂O₃相。 正是由于疏松层多孔且γ-Al₂O₃相较多,因而其硬 度及耐磨性能远低于致密层。因此,本研究仅分析 了微弧氧化氧化膜致密层的硬度及耐磨性能。

硬度测试分析仪器为HX-1型显微硬度计。样品 硬度测量结果见表3。由表3可见,微弧氧化膜致密层 硬度远高于基体硬度,也远高于硬质阳极氧化膜。

表3 样品硬度测量

Table 3	Hardness of the	he samples
---------	-----------------	------------

样品	致密层厚度/μm	负载/g	压痕对角线长度/μm	显微硬度值/HV	
LY12基体		100	约145	135	
LD31基体		100	约150	126	
LF6基体		100	约150	126	
LF21基体		100	约150	126	
LY12–52 μm	约25	100	约45	1405	
LD31–55 µm	约27	100	约45	1405	
LF6–85 μ m	约53	100	约55	941	
LF21-70 μm	约34	100	约45	1405	
LY12硬质阳极氧化	约50	50	约45	703	

铝合金基体和微弧氧化膜致密层摩擦磨损测试 分析后的表面形貌如图3所示。

图3 摩擦磨损测试分析后的样品表面形貌

Fig.3 Surface topography of samples which were subjected to friction and wear

摩擦磨损测量结果见表4。由表4可知,微弧氧 化膜致密层在测试参数(负载和转速)远高于铝基体 和硬质阳极氧化膜测试参数的条件下,磨损速率仍远 低于铝基体和硬质阳极氧化膜。这表明微弧氧化膜 致密层耐磨损性能优于铝基体和硬质阳极氧化膜。

2.3 氧化膜耐腐蚀性能分析

本研究通过电化学测试分析和中性盐雾试验两 种方法来检验铝合金微弧氧化膜层的耐腐蚀性能。

2.3.1 电化学测试分析

电化学测试分析仪器型号为CS300电化学测试 系统。通过电化学测试可以获得材料的腐蚀电位和 腐蚀电流,通过分析腐蚀电位和腐蚀电流来判断材 料的耐腐蚀性能。图4为LD31微弧氧化样品与铝 基体电化学曲线的比较,其中横坐标为腐蚀电流密 度,纵坐标为腐蚀电位。

表4 摩擦磨损测试分析数据

Table 4 Data analysis of the friction and wear test

	致密层厚度/μm	负载/N	转速(r/min)	宽/μm	深/μm	面积/μm²	磨损速率/(mm ³ N ⁻¹ m ⁻¹)
LY12基体		3.43	339	797	58.5	4.37×10^4	3.75×10^{-3}
LD31基体		3.43	311	914	73.4	6.1×10^{4}	5.72×10^{-3}
LF6基体		3.43	283	835	72.5	5.44×10^4	5.60×10^{-3}
LF21 基体		3.43	283	808	62.8	5.52×10^4	5.69×10^{-3}
LY12-52 μm	约25	10.35	843	610	18.2	1.97×10^4	2.26×10^{-4}
LD31–55 μm	约27	10.35	563	1477	32.1	3.95×10^4	6.78×10^{-4}
LF6-85 μm	约53	10.35	507	1073	27.1	2.70×10^4	5.07×10^{-4}
LF21–70 μm	约34	16.17	843	777	24.8	2.28×10^4	1.67×10^{-4}
LY12硬质阳极氧化	约50	6.37	283	1593	16.8	1.62×10^4	8.99×10^{-4}

注:由于磨痕深度超过膜层厚度,因此该结果仅作参考。

Fig.4 Electrochemical curve

样品电化学测试分析见表5。由表5可见,表面 氧化样品的腐蚀电流与腐蚀电位较铝基体和硬质阳 极氧化膜有较大降低,耐腐蚀性能得到改善。

表5 电化学测试分析数据

Table 5 Data analysis of the electrochemical test

长日	氧化膜层	腐蚀	腐蚀
作于自日	厚度/μm	电流/μA	电位/mV
LY12基体		9.9E-6	-0.61349
LD31基体		2.48E-5	-0.73772
LF6基体		1.8E-5	-0.77192
LF21 基体		1.55E-5	-0.69151
LY12	约24	7.2E-7	-0.60816
LD31	约20	4.9E-8	-0.31738
LF6	约35	1.7E-6	-0.81388
LF21	约30	1E-6	-0.73966
LY12硬质阳极氧化	约50	3.1E-6	-0.7593

2.3.2 盐雾试验

中国赛宝实验室的盐雾试验检验结果见表6。 盐雾试验采用标准为GJB 150.11A—2009"军用设备 环境试验方法——盐雾试验"。

表6 盐雾试验检测结果

Table 6 Testing result of the salt spray test

样旦	氧化膜层	中性盐雾	腐蚀
1十日日	厚度/μm	时间/h	情况
	24	96	未见腐蚀
LY12	48	96	未见腐蚀
	88	96	未见腐蚀
	20	96	未见腐蚀
LD31	55	96	未见腐蚀
	110	96	未见腐蚀
	35	96	未见腐蚀
LF6	85	96	未见腐蚀
	120	96	未见腐蚀
	29	96	未见腐蚀
LF21	70	96	未见腐蚀
	105	96	未见腐蚀
面板(LY12)	95	96	未见腐蚀
勤劫捉(IEAM)	15	96	未见腐蚀
HXXX/IX(LFUM)	60	96	未见腐蚀

盐雾试验后样品外观如图5所示。

图5 盐雾试验后样品外观 Fig.5 Façade of samples after the salt spray test

2.3.3 湿热试验

湿热试验检验结果见表7。湿热试验采用标准为GJB 150.9A—2009"军用设备环境试验方法——湿热试验"。

湿热试验条件参数为:高温高湿阶段60℃,相对适度95%;低温高湿阶段30℃,相对适度95%;

表7 湿热试验检测结果

Table 7 Testing result of the damp heat test

样品	氧化膜层厚度/μm	腐蚀情况
LY12	24	未见腐蚀
LD31	20	未见腐蚀
LF6	35	未见腐蚀
LF21	29	未见腐蚀

试验周期数:10个周期(1周期为24h)。

湿热试验后样品外观如图6所示。

图 6 湿热试验后样品外观 Fig.6 Façade of samples after the damp heat test

3 结论

通过研究不同牌号铝合金的微弧氧化处理参数、 工艺方法以及氧化膜层的性能指标,得出以下结论:

1) 微弧氧化工艺所采用的氧化液为硅酸盐碱 性溶液体系,正电压 500~530 V,负电压 160~200 V。 溶液温度以室温为宜,温度变化范围较宽,微弧氧化 工艺流程简单;

 微弧氧化膜层达到了以下技术指标:氧化膜 层厚度 20~120 μm;氧化膜致密层硬度(HV)>900;
 致密层耐磨,磨损率<10⁻⁴ mm³/(N·m);盐雾试验时 间>96 h;湿热试验时间>10个周期;

3) 微弧氧化技术与阳极氧化技术相比,工艺流 程较简单,条件要求较宽松,膜层性能优于阳极氧 化膜。

参考文献:

[1] 辛铁柱,赵万生,刘晋春,等. 铝合金微弧氧化过程的特性研究及机理分析[J]. 表面技术,2006,35(2):14—15.
 (下转第151页)

YI Ping, QIN Xiao-zhou, WEI Xiao-qin, et al. Contrast Study of Solar Radiation of Different Angles[J]. Equipment Environmental Engineering, 2010, 7(3):73-77.

[5] 程丛高,徐路,陈丹明.沙尘对直升机挂架影响的分析及 试验验证方法[J].装备环境工程,2010,7(3):117—122. CHENG Cong-gao, XU Lu, CHEN Dan-ming. Impact of Sand-dust on Helicopter Pylon and Its Verification Test Method[J]. Equipment Environmental Engineering, 2010, 7 (3):117-122.

(上接第130页)

tion Grey Fuzzy Comprehensive Evaluation[J]. Equipment Environmental Engineering, 2006, 3(1):56–58.

- [6] 左浩,马亮,刘博. 基于模糊理论的鱼雷武器系统作战效 能分析[J]. 装备环境工程,2007,4(4):42—45.
 ZUO Hao, MA Liang, LIU Bo. Based on the Theory of Fuzzy Torpedo Weapon System Combat Effectiveness Analysis[J].
 Equipment Environmental Engineering, 2007, 4(4): 42— 45.
- [7] 孟秀云.导弹制导原理与控制系统原理[M].北京:北京理

工大学出版社,2003.

MENG Xiu-yun. Principle of Missile Guidance and Control System[M]. Beijing: Beijing University of Science and Technology Press, 2003.

[8] 周真,马德仲,于晓洋.用于产品可靠性分析的模糊
FMECA方法[J].电机与控制学报,2010,14(10):90-93.
ZHOU Zhen, MA De-zhong, YU Xiao-yang. Used for
Product Reliability Analysis of Fuzzy FMECA Method[J].
Journal of Motor and Control, 2010, 14(10):90-93.

(上接第135页)

XIN Tie-zhu, ZHAO Wan-sheng, LIU Jin-chun, etc. The Characteristics Research and Mechanism Analysis in Aluminum MAO Process[J]. Surface Technology, 2006, 35 (2):14-15.

[2] 薛文彬,邓志威,来永春,等. 铝合金微弧氧化陶瓷膜的相分布及其形成[J]. 材料研究学报,1997,11(4):169—171.

XUE Wen-bin, DENG Zhi-wei, LAI Yong-chun, etc. The Facies Distribution and Formation of Aluminum MAO Ceramic Coating[J]. Materials Research Journal, 1997, 11 (4):169—171.

 [3] 薛文彬,来永春,邓志威,等. 铝合金微弧氧化膜的形成 与特性[J]. 电镀与精饰, 1996, 18(5):3—5.
 XUE Wen-bin, LAI Yong-chun, DENG Zhi-wei, etc. The Formation and Characteristics of Aluminum MAO Film[J]. Plating and Finishing, 1996, 18(5): 3-5.

- [4] 薛文彬,邓志威,来永春,等. 铝合金微弧氧化陶瓷膜的形貌及相组成分析[J]. 北京师范大学学报(自然科学版),1996,32(1):67—70.
 XUE Wen-bin, DENG Zhi-wei, LAI Yong-chun, etc. The Morphology and Phase Composition Analysis of Aluminum MAO Ceramic Coating, Beijing Normal University Journal (Natural Science Edition) [J]. 1996,32(1):67—70.
- [5] 胡正前,马晋. 硅酸盐电解液中铝合金微弧氧化陶瓷膜层的结构与性能[J]. 金属热处理,2003,28(3):23—26.
 HU Zheng-qian, MA Jin. The Structure and Properties of Aluminum MAO Ceramic Coating in Silicate Electrolyte[J]. Heat Treatment of Metals,2003,28(3):23—26.