环境效应与防护

某〇型密封圈的双参数加速退化规律分析

王莉¹,顾晓辉¹,潘守华²

(1. 南京理工大学,南京 210094; 2. 北方特种能源集团西安庆华公司,西安 710025)

摘要:目的研究某 O 型密封圈在温度影响下的退化规律。方法 以压缩永久变形率和压缩应力松弛率作为 参数,在 50、60、70、80 ℃对某 O 型密封圈进行恒定应力加速退化试验,根据退化数据建立退化轨迹模型, 确定伪失效寿命的分布,结合阿伦尼斯模型外推 20 ℃时某 O 型密封圈的寿命,并进行可靠性分析。结果 某 O 型密封圈的性能退化过程具有可加速性,它的伪失效寿命服从正态分布。根据压缩永久变形参数外推 20 ℃ 下、0.9 可靠度时,某 O 型圈的寿命为 8.695 年,根据压缩应力松弛参数外推的寿命为 8.748 年,根据双参 数不相关的情况外推的寿命为 8.655 年,3 次评估结果较为接近。结论 文中使用的试验方法和数据处理方 法能有效地评估某 O 型密封圈的寿命。考虑两个参数不相关情况时,得到的评估结果会小于单参数情况下 的评估结果。

关键词:橡胶密封圈;加速退化试验;可靠性评估 DOI: 10.7643/issn.1672-9242.2019.11.016 中图分类号:TK402 文献标识码:A 文章编号: 1672-9242(2019)11-0084-06

Regular Pattern of the O-ring's Two-parameter Accelerated Degradation

WANG Li¹, GU Xiao-hui¹, PAN Shou-hua²
(1. Nanjing University of Science and Technology, Nanjing 210094, China;
2. Xi'an Qinghua Co., North Special Energy Group Co. Ltd., Xi'an 710025, China)

ABSTRACT: Objective To study the regular degradation pattern of O-ring affected by temperature. **Methods** A constant stress accelerated degradation test was conducted at 50, 60, 70 and 80 °C with compression permanent deformation rate and compressive stress relaxation rate as parameters. On the basic of degraded data, the degenerate trajectory model was built, and the pseudo-failure life distribution was determined. The O-ring's life at 20 °C was predicted and its reliability was analyzed combined with the Arrhenius model. **Results** The performance degradation process of the O-ring had acceleration property. The pseudo-failure life accords with normal distribution. The estimated life of the O-ring under 0.9 reliability at 20 °C was 8.695 years based on compression permanent deformation, while 8.748 years based on compressive stress relaxation rate, and 8.655 year based on the two parameters. These three results were similar. **Conclusion** The test method and data processing method used in this paper can effectively estimate the O-ring's life. The result obtained when two parameters are not relevant is less than that when there is only one parameter.

KEY WORDS: rubber seal; accelerated degradation test; reliability evaluation

橡胶密封圈是一种常用的密封元件,具有高弹 性、压缩变形大和能承受重复载荷等优点[1],使用范

收稿日期: 2019-04-11; 修订日期: 2019-05-07

作者简介:王莉 (1995—),女,江苏南通人,硕士研究生,主要研究方向为可靠性试验技术、机电可靠性。 通讯作者:顾晓辉 (1964—),男,江苏南京人,博士,教授,主要研究方向为武器装备可靠性、机电可靠性。

围广,应用价值高。由于橡胶材料自身分子结构的特 点,使其在使用和贮存过程中会受到许多因素的影 响,从而逐渐老化,最终丧失使用价值。因此,橡 胶密封圈是产品的薄弱环节,对其退化规律进行分 析可以预测其寿命,从而给产品的维修和替换提供 理论依据。

获取橡胶材料寿命数据的方法有自然贮存试验 和加速寿命试验。前者能得到最精确的数据,却受限 于试验周期太长、试验成本过高等因素,较少使用; 后者则是通过提高橡胶所受的应力(如温度应力) 来加速其老化过程,试验成本和时间得到控制,目 前使用较为广泛。根据加速寿命试验获得的数据进 行寿命评估的方法主要是动力学曲线直线化法^[2], 该方法通过建立橡胶材料性能与试验时间之间的方 程以及加速方程,对实际情况下橡胶材料的寿命进 行预测。

目前对橡胶材料老化的研究主要是对单一性能 参数进行观测,但退化过程中往往存在多个性能参 数。多参数影响下橡胶材料的寿命与依据单参数评估 得到的寿命会有一定差距。因此,文中以永久压缩变 形率和压缩应力松弛率为参数,对某 O 型密封圈进 行恒定应力加速退化试验,分析其退化规律并对其寿 命进行可靠性评估。

1 加速退化试验原理

恒定应力加速退化试验是利用恒定的高应力来 加快产品退化的试验方法,根据试验获得的性能退化 数据可以预测和估计产品在实际环境下的可靠性及 性能保持时间^[3]。试验的前提条件是产品在不同的应 力条件下失效机理保持不变,即退化机理存在一致 性^[4],同时在加速过程存在加速模型。

橡胶在贮存过程中,会受到环境中热能、光能、 机械能和辐射能的作用,同时还会和空气中的成分 发生化学反应,破坏自身结构,出现老化变形的现 象,失去使用价值。橡胶密封件在贮存条件下老化的 机理主要是热氧老化和机械应力下的橡胶蠕变^[5]。在 热氧老化期间,由于受热,橡胶密封圈分子链发生 降解和交联反应。降解反应导致分子链断裂从而材 料变软、发黏并丧失机械强度,交联反应则使材料 变脆和失去弹性从而失去密封性能^[6]。加速退化试 验中常依据热氧老化机理选择温度应力作为加速 应力。

加速模型描述了加速试验中寿命特征与应力水 平之间的关系,它的建立是进行外推的基础,会直接 影响外推的精度。当加速应力为温度时,常用的加速 模型为阿伦尼斯模型^[7]。结合退化数据与试验时间之 间的关系、加速模型和使用条件,可以预测橡胶密封 圈的寿命。

2 试验

2.1 方案

试验对象为某 O 型密封圈,材料是硫化丁腈橡 胶,属于轴向安装的静密封元件。该密封圈的尺寸为 φ3.5 mm×25 mm。选择对性能影响最大的温度应力 作为加速应力,丁腈橡胶的使用温度范围为-30~ 130 ℃。选择设置 4 个温度应力水平:50、60、70、 80 ℃,每个温度应力水平下投入 8 个样品,样本总 数为 32。

丁腈橡胶性能退化的主要表现为变脆、变硬和弹性消失,将性能参数定为压缩永久变形率 ε 和压缩应力松弛率 δ 。考虑到橡胶材料在低温环境中会物理收缩^[8],在设定失效阈值时,要补偿低温收缩量。低温环境下,当 $\varepsilon>31\%$ 或者 $\delta<80\%$ 时,会发生泄漏。将 $\varepsilon=31\%$ 、 $\delta=80\%$ 定为O型密封圈的失效阈值。

文献[9]表明,试验中进行 6次检测可以得到较好的橡胶材料性能退化拟合曲线。本试验也进行 6次检测,随着试验温度的升高,相邻检测次数的时间间隔要相应地缩短。检测时间的安排见表 1。

表 1 各试验温度的检测时间安排

试验温度/℃	检测时间/h					
50	48	96	192	312	456	648
60	5	31	62	98	146	206
70	5	17	41	71	107	155
80	4	12	24	40	61	88

实际使用中,O型圈被轴向安装以承受轴向压力。为模拟实际安装状态,设计了模拟夹具。该夹具采用LC4硬铝材料,由上下2块夹板、限高环以及4枚螺栓构成,如图1所示。限高环的高度是样品初始轴向高度的70%,从而使O型圈在夹具内保持30%的压缩率。

图 1 模拟夹具实物

2.2 试验步骤

试验中所需设备有:恒温试验箱(XMTD-9000), 温控精度为1℃;橡胶测厚仪(CH-12.7-ATSX),测 量精度为0.01 mm;数显式推拉力计(HP-100),测 量精度为0.1 N。

从同一批 O 型圈产品中选出 32 个样品,分成 4 组,将样品安装在模拟夹具内。为获得样品试验前的

性能参数初始值,将夹具在室温中放置 1 天进行预 压,再取出样品静置 1 天,等待其恢复。随机在 O 型圈的两面各取均匀分布的 4 个点,用测厚仪测量它 们的厚度,取其均值作为样品轴向厚度的初始值。同 样,用推拉力计测量 O 型圈上 8 个分布点的弹性压 力,取其均值作为压力的初始值。

给恒温箱设定试验温度,将一组样品置于其中, 按照表1安排的检测时间点取出样品,在室温下冷却 1h,按上述方法测得轴向厚度和弹性压力两组数据。 当一组样品检测结束后,给恒温箱重设温度,并投入 一组新的样品,继续测量和记录数据,直至4组试验 完成。

3 退化规律分析

3.1 试验数据处理

试验结束后,得到 O 型圈的轴向厚度与弹性压力两组数据。压缩永久变形率的计算公式为:

$$\varepsilon = \frac{D_0 - D_t}{D_0 - D_x} \times 100\% \tag{1}$$

式中: ε 为压缩永久变形率, %; D_0 为样品试验 前测得的轴向厚度初始值, mm; D_x 为夹具的限制高 度, mm; D_t 为样品在检测时刻 t 测得的轴向厚度, mm。

压缩应力松弛率按式(2)计算:

$$\delta = \frac{\sigma_t}{\sigma_0} \times 100\% \tag{2}$$

式中: δ 为压缩应力松弛率,%; σ_t 为样品在检测时刻t测得的弹性压力值,N; σ_0 为试验前样品测得的弹性压力初始值,N。

根据式(1)和式(2)分别计算各样品在检测时间点的压缩永久变形率和压缩应力松弛率,由此得到永久变形率曲线和应力松弛率曲线,如图2和图3 所示。

3.2 退化轨迹方程

橡胶材料的老化过程可以用老化动力学方程表示:

$$P = B \cdot \exp(-Kt^{\alpha}) \tag{3}$$

式中:*P* 为橡胶残余性能;*B* 为试验常数;*K* 为 老化速度常数,与温度相关;*t* 为老化时间; α 为时 间指数,0<α<1。

对于压缩永久变形参数, $P=1-\varepsilon$, 表示 O 型圈 在 t 时间后残留的压缩永久变形率, 代入到老化动力 学方程, 得:

$$1 - \varepsilon = B_1 \cdot \exp(-K_1 t^{\alpha_1}) \tag{4}$$

对式(4)两端取对数,得:

$$\ln(1-\varepsilon) = \ln B_1 - K_1 t^{\alpha_1}$$
(5)

$$\Rightarrow Y_1 = \ln(1 - \varepsilon)$$
, $X_1 = t^{\alpha_1}$, $a_1 = \ln B_1$, $b_1 = -K_1$,

建立一元线性回归方程:

$$=a_1+b_1X_1\tag{6}$$

采用逐次逼近法对参数 *a*₁进行估算,即确定使 残差平方和 *I*₁最小时 *a*₁的取值, *I*₁的表达式为:

 Y_1

$$I_1 = \sum_{i=1}^{4} \sum_{j=1}^{8} \sum_{k=1}^{6} (Y_{1ijk} - \hat{Y}_{1ijk})^2$$
(7)

$$\hat{Y}_{1ijk} = \ln \hat{B}_{1ijk} - \hat{K}_{1ijk} \cdot t^{\alpha_1}$$
(8)

式中: Y_{liik} 是根据检测数据计算得到的实际值;

 \hat{Y}_{1ik} 是根据 α_1 的取值对式(6)进行拟合得到的估计值。

经计算, α_1 =0.32 时, I_{min} =0.1108。确定了参数 α_1 后, 对式(6)进行线性回归分析,估算式(4)中各 参数的值,得到各样品的退化轨迹方程,共 32 个。 此处仅列出 50 ℃下 1 号样品的退化方程:

$$1 - \varepsilon = \exp(0.1192 - 0.0659t^{0.32}) \tag{9}$$

对于压缩应力松弛参数,可用上述方法得到各样品的退化轨迹方程。其中, $P=\delta$,表示 O 型圈在 t 时间后残留的压缩应力松弛率,代入式(3)得:

$$\delta = B_2 \cdot \exp(-K_2 t^{\alpha_2}) \tag{10}$$

令 $Y_2 = \ln(1-\varepsilon)$, $X_2 = t^{\alpha_2}$, $a_2 = \ln B_2$, $b_2 = -K_2$, 建立一元线性回归方程:

$$Y_2 = a_2 + b_2 X_2$$
 (11)

 经计算, a_1 =0.12。50 ℃下1号样品的退化方程为:
 $\delta = \exp(0.7407 - 0.4624t^{0.12})$
 (12)

 退化轨迹方程中, 拟合参数的具体数值见表 2。

3.3 伪失效寿命分布

将失效阈值 ε=31%、δ=80%代入到各样品的退化轨 迹方程中,得到各样品的伪失效寿命,具体数据见表3。 正态分布可用于分析由于老化而发生失效的产品^[10]。采用 Wilk-Shapiro 的 W 检验法检验各样品的 伪失效寿命,检验统计量 W 的值见表 4。

根据检验统计量 W 的分位数表,当显著水平取 0.05,样本容量为8时,W_{0.05}=0.818。与表4中的计算 值进行比较,可以得出结论:各试验温度下样品的伪失 效寿命均服从正态分布。利用最小二乘法得到伪失效寿 命分布的参数即均值μ和标准差σ的估计值,见表5。

表 2 退化轨迹方程中的拟合参数值

序号	a_1	b_1	a_2	b_2	序号	a_1	b_1	<i>a</i> ₂	b_2
1	0.1192	-0.0659	0.7407	-0.4624	17	0.1226	-0.1215	0.6391	-0.6412
2	0.0510	-0.0506	0.7405	-0.4642	18	0.0980	-0.1372	0.7473	-0.6972
3	-0.0080	-0.0414	0.7392	-0.4647	19	0.1009	-0.1208	0.7045	-0.6621
4	0.1113	-0.0634	0.7721	-0.4828	20	0.1098	-0.1334	0.7439	-0.6880
5	0.0934	-0.0595	0.7444	-0.4675	21	0.0252	-0.1177	0.6177	-0.6407
6	0.0183	-0.0482	0.7575	-0.4703	22	0.1327	-0.1526	0.6223	-0.6444
7	0.0852	-0.0589	0.7375	-0.4650	23	0.1289	-0.1524	0.6412	-0.6590
8	0.0476	-0.0484	0.7747	-0.4868	24	0.1050	-0.1184	0.6723	-0.6565
9	-0.0206	-0.0641	0.4217	-0.3862	25	-0.1336	-0.1448	0.9655	-0.9594
10	-0.0125	-0.0654	0.5302	-0.4395	26	0.0269	-0.1673	0.8304	-0.8751
11	0.0051	-0.0673	0.5351	-0.4450	27	-0.1797	-0.1416	0.9873	-0.9910
12	-0.0348	-0.0673	0.4954	-0.4271	28	-0.0541	-0.1796	0.9022	-0.9394
13	-0.0059	-0.7017	0.5103	-0.4454	29	0.0146	-0.1552	0.9488	-0.9431
14	-0.0201	-0.0676	0.5975	-0.4994	30	0.0481	-0.1749	0.8608	-0.8783
15	-0.0110	-0.0682	0.5525	-0.4654	31	-0.0234	-0.1406	0.9256	-0.9339
16	-0.0071	-0.0703	0.5741	-0.4871	32	0.0171	-0.1341	0.9088	-0.8975

表 3 各样品的伪失效寿命

压缩永久变形率							
序号	伪失效寿命/d	序号	伪失效寿命/d	序号	伪失效寿命/d	序号	伪失效寿命/d
1	21.9954	9	8.4281	17	3.3344	25	0.1955
2	31.4483	10	8.5099	18	1.9395	26	0.6253
3	36.8556	11	9.0059	19	2.9457	27	0.1067
4	23.6528	12	6.3494	20	2.2923	28	0.2459
5	25.5551	13	6.7435	21	1.8493	29	0.7163
6	28.5141	14	7.1509	22	1.7409	30	0.6404
7	25.0171	15	7.5466	23	1.7058	31	0.7055
8	35.2370	16	7.0990	24	3.2243	32	1.1543
压缩应力松弛率							
			压缩应力	松弛率			
序号	伪失效寿命/d	序号	压缩应力 伪失效寿命/d	松弛率 序号	伪失效寿命/d	序号	伪失效寿命/d
序号 1	伪失效寿命/d 18.9491	序号 9	压缩应力 伪失效寿命/d 2.9898	松弛率 序号 17	伪失效寿命/d 0.4916	序号 25	伪失效寿命/d 0.2484
序号 1 2	伪失效寿命/d 18.9491 18.3231	序号 9 10	压缩应力 伪失效寿命/d 2.9898 3.7166	松弛率 序号 17 18	伪失效寿命/d 0.4916 0.6552	序号 25 26	伪失效寿命/d 0.2484 0.1957
序号 1 2 3	伪失效寿命/d 18.9491 18.3231 17.9698	序号 9 10 11	压缩应力 伪失效寿命/d 2.9898 3.7166 3.5346	松弛率 序号 17 18 19	伪失效寿命/d 0.4916 0.6552 0.6926	序号 25 26 27	伪失效寿命/d 0.2484 0.1957 0.2207
序号 1 2 3 4	伪失效寿命/d 18.9491 18.3231 17.9698 17.2940	序号 9 10 11 12	压缩应力 伪失效寿命/d 2.9898 3.7166 3.5346 3.1800	松弛率 序号 17 18 19 20	伪失效寿命/d 0.4916 0.6552 0.6926 0.7110	序号 25 26 27 28	伪失效寿命/d 0.2484 0.1957 0.2207 0.1877
序号 1 2 3 4 5	伪失效寿命/d 18.9491 18.3231 17.9698 17.2940 17.8668	序号 9 10 11 12 13	压缩应力 伪失效寿命/d 2.9898 3.7166 3.5346 3.1800 2.6609	松弛率 序号 17 18 19 20 21	伪失效寿命/d 0.4916 0.6552 0.6926 0.7110 0.4017	序号 25 26 27 28 29	<u>伪</u> 失效寿命/d 0.2484 0.1957 0.2207 0.1877 0.2546
序号 1 2 3 4 5 6	伪失效寿命/d 18.9491 18.3231 17.9698 17.2940 17.8668 19.0103	序号 9 10 11 12 13 14	压缩应力 伪失效寿命/d 2.9898 3.7166 3.5346 3.1800 2.6609 2.6163	松弛率 <u>序号</u> 17 18 19 20 21 22	伪失效寿命/d 0.4916 0.6552 0.6926 0.7110 0.4017 0.4001	序号 25 26 27 28 29 30	伪失效寿命/d 0.2484 0.1957 0.2207 0.1877 0.2546 0.2405
序号 1 2 3 4 5 6 7	伪失效寿命/d 18.9491 18.3231 17.9698 17.2940 17.8668 19.0103 17.6088	序号 9 10 11 12 13 14 15	压缩应力 伪失效寿命/d 2.9898 3.7166 3.5346 3.1800 2.6609 2.6163 2.9414	松弛率 序号 17 18 19 20 21 22 23	伪失效寿命/d 0.4916 0.6552 0.6926 0.7110 0.4017 0.4001 0.3994	序号 25 26 27 28 29 30 31	<u>伪</u> 失效寿命/d 0.2484 0.1957 0.2207 0.1877 0.2546 0.2405 0.2339

	表4 W	/ 检验的计算	章值			
_	试验温度/℃					
	50	60	70	80		
W_1 (压缩变形)	0.9239	0.9384	0.8435	0.9154		
W ₂ (应力松弛)	0.9604	0.9237	0.8527	0.9688		

表 5 各样品伪失效寿命分布的参数估计值

	试验温度/℃				
	50	60	70	80	
$\hat{\mu}_{l}$ (压缩变形)	28.5344	7.6041	2.3790	0.5487	
$\hat{\sigma}_{_{ m l}}$ (压缩变形)	5.4837	0.9444	0.6856	0.3475	
$\hat{\mu}_2$ (应力松弛)	17.9400	3.0211	0.5381	0.2337	
$\hat{\sigma}_2$ (应力松弛)	0.8385	0.4335	0.1346	0.0325	

对表 5 中 μ 和 σ 的估计值进行最小二乘回归分 析,得到相关系数 r_1 =0.9897, r_2 =0.9416,两者均大 于相关系数临界值($r_2^{0.1}$ =0.9),即线性回归效果显著。 因此可以认为各试验温度下伪失效寿命的均值与标 准差的比值相等,即在加速退化试验中,O型圈的加 速失效机理具有一致性^[11]。

3.4 加速寿命方程

加速方程描述了产品的寿命特征与应力之间的 关系,本试验的试验条件为热应力,因此根据阿伦尼 斯模型建立加速方程,见式(13)。

 $K = A \exp(E / RT) \tag{13}$

式中: *K* 为老化速度常数; *A* 为正常数; *E* 为激 活能,与材料有关; *R* 为玻尔兹曼常数; *T* 是绝对 温度。

对式(13)两端取对数,得:

$$\ln K = \ln A + E / RT \tag{14}$$

将各样品伪失效寿命分布的参数 $\hat{\mu}_1 、 \hat{\sigma}_1 、 \hat{\mu}_2 、$ $\hat{\sigma}_2$ 分别与试验温度的倒数 1/T 按式(14)进行回归分 析,得到拟合参数及相关系数的估计值,得到对应的 加速方程:

$\mu_1 = \exp(-42.5115 + 14836.3 / T)$	(15)
$\sigma_1 = \exp(-29.1942 + 9879/T)$	(16)

$$\mu_2 = \exp(-49.5070 + 16884.5/T)$$
(17)

$$\mu_2 = \exp(-19.5070 + 1000 + 577)$$
(17)

$$\sigma_2 = \exp(-38.3430 + 12407.977) \tag{18}$$

相关系数依次为 0.9981、0.9506、0.9917、0.9833, 根据相关系数临界值表, r_{0.05}=0.95。由于各参数的 相关系数均大于 0.95,因此加速方程的线性回归效果 显著。

3.5 可靠性分析

产品的寿命服从正态分布时,其可靠度函数表 示为:

$$R(t) = 1 - \mathcal{O}\left(\frac{t - \mu}{\sigma}\right) \tag{19}$$

则可靠寿命为:

$$t = \mu + \sigma \times \Phi^{-1}(1 - R(t)) \tag{20}$$

依据式(15)—(18)列出的加速方程,得到 20℃对应的均值 μ 和标准差 σ,代入式(20),得到 在温度为 20℃和可靠度为 0.9 时 O 型圈的寿命评估 结果:根据压缩永久变形数据得到的结果为 8.695 年, 根据压缩应力松弛数据得到的结果为 8.748 年。

假设压缩永久变形和压缩应力松弛两个参数相 互独立,则双参数的可靠度函数为单参数可靠度的 乘积:

$$R = R_1 \times R_2 = \left[1 - \Phi(\frac{t - \mu_1}{\sigma_1})\right] \cdot \left[1 - \Phi\left(\frac{t - \mu_2}{\sigma_2}\right)\right] \quad (21)$$

单个参数的可靠度曲线与双参数的可靠度曲线 如图 4 所示。可以看出,双参数不相关时的可靠度小 于单个参数的可靠度。可靠度为 0.9 时,双参数不相 关情况下的寿命评估结果为 8.655 年。

4 结论

以压缩永久变形和压缩应力松弛为参数,以温度 应力作为试验应力,对某 O 型密封圈进行了加速退 化试验,并对退化数据进行处理,分析其老化规律, 得出以下结论。

1) 某 O 型密封圈的寿命服从正态分布,其性能 退化具有可加速性,可以使用加速退化试验的方法分 析其老化规律。

2)基于压缩永久变形参数和基于压缩应力松弛 参数得到的评估结果较为接近,验证了本次试验及数 据处理方法的有效性。

3)假设两个性能参数之间相互独立,考虑双参数综合影响时的寿命评估结果会比单参数情况下小。

参考文献:

 [1] 黄舟, 贾东, 陈军红, 等. 工程橡胶压缩实验和缓冲特 性分析[J]. 装备环境工程, 2018, 15(6): 21-26.

- [2] 张凯,周堃,何建新.一种橡胶密封圈的剩余贮存寿命 评估方法[J]. 装备环境工程,2018,15(4):95-97.
- [3] 王彦霖,姚洪伟. 自然随机温度应力条件的加速退化 模型研究[J]. 装备环境工程, 2017, 14(7): 97-102.
- [4] 肖坤. 基于 O 型橡胶密封圈加速退化试验研究[D]. 南 京:南京理工大学, 2013.
- [5] 夏洪花,王新坤,吴灿伟. 橡胶材料的老化及寿命预测 方法研究[J]. 航空材料学报,2011,31(S1):219-222.
- [6] 肖坤, 顾晓辉. 某弹用 O 型密封圈热氧老化试验与寿 命评估[J]. 弹箭与制导学报, 2013, 33(6): 59-61.

- [7] 茆诗松. 加速寿命试验[M]. 北京: 科学出版社, 1997.
- [8] 肖坤,顾晓辉,彭琛. 基于恒定应力加速退化试验的某引信用 O 型密封橡胶圈可靠性评估[J]. 机械工程学报, 2014, 50(16): 62-69.
- [9] 常新龙,姜帆. 高温湿热环境下氟橡胶密封圈失效研 究[J]. 装备环境工程, 2012, 9(1): 23-25.
- [10] 赵宇,杨军,马小兵.可靠性数据分析[M].北京:国防 工业出版社,2011.
- [11] 叶朋峰. 基于性能退化的加速寿命试验方法研究[D]. 南京:南京理工大学, 2016.