CO2和微量 H2S 共存环境中套管防腐优选研究

谢涛',张晓诚',林海',窦蓬',孙连坡',闫伟²

(1.中海石油(中国)有限公司天津分公司 & 海洋石油高效开发国家重点实验室,天津 300459; 2.中国石油大学(北京),北京 102249)

摘要:目的 研究不同材质套管在 CO₂和微量 H₂S 共存环境中的腐蚀特征。方法 采用高温高压腐蚀仪,以 渤海某油田实际采出水样为腐蚀介质进行模拟实验,利用扫描电镜,能谱仪(EDAX)分析不同管材在不同 腐蚀条件下腐蚀试样表面腐蚀产物的形貌和组分特征,对比分析不同钢材在对应腐蚀环境下的腐蚀速率, 并建立长期腐蚀速率预测模型。结果 单独 CO₂(分压为 0.1 MPa)腐蚀环境中,N80 材质在 50℃条件下发 现有局部腐蚀,其他材质表现为均匀腐蚀。CO₂(分压为 0.1 MPa)和微量 H₂S(分压为 0.0006 MPa)共存 条件下,碳钢和低 Cr 钢腐蚀差异小,为均匀腐蚀。微量 H₂S 的加入改善了腐蚀环境,13Cr 钢表面腐蚀程度 较小,几乎不腐蚀。单独 CO₂与 CO₂/H₂S 共存的腐蚀速率相比,腐蚀速率降低 60%以上。随着测试时间的 增加,几种材质的腐蚀速率按照幂函数形式递减,N80、1Cr、3Cr 材质的长期腐蚀速率分别为 0.023、0.19、 0.13 mm/a。结论 微量 H₂S 对 CO₂腐蚀具有明显的抑制作用,3Cr-N80 套管、线重 69.983 kg/m 以上能够满 足腐蚀后套管强度要求。

关键词: CO₂; H₂S; 套管钢; 腐蚀机理; 腐蚀速率 中图分类号: TG174.2 文献标识码: A 文章编号: 1672-9242(2021)01-0057-07 DOI: 10.7643/ issn.1672-9242.2021.01.009

Corrosion Behavior of Casing Steel with Different Materials in CO₂ and H₂S Environment

XIE Tao¹, ZHANG Xiao-cheng¹, LIN Hai¹, DOU Peng¹, SUN Lian-po¹, YAN Wei²

(1. State Key Laboratory Offshore Oil Exploitation, Tianjin Branch of CNOOC China Limited, Tianjin 300459, China;
 2. China University of Petroleum, Beijing 102249, China)

ABSTRACT: To study the corrosion characteristics of different casing materials in the coexistence environment of CO_2 and H_2S . The simulated experiment is carried out using high temperature and high pressure corrosion instrument and taking actual produced water samples from an oilfield of the Bohai sea as corrosion medium. The morphology and composition of corrosion products on the surface of corrosion specimens in different corrosion environment are analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX). The corrosion rates of different steels in the corrosive environment are measured, and a long-term corrosion rate prediction model is established. The results show that N80 has local corrosion in single CO_2 environment (partial pressure is 0.1 MPa) when the temperature is 50 °C, and the others present uniform corrosion. The difference of surface corrosion between carbon steel and low Cr steel is small in the coexistence environment of CO_2 (par-

收稿日期: 2020-04-20; 修订日期: 2020-05-10

Received: 2020-04-20; Revised: 2020-05-10

基金项目:国家重大专项"渤海油田高效开发示范工程"(2016ZX05058-002)

Fund: Supported by National Major Special Project "High Efficiency Development Demonstration Project of Bohai Oilfield" (2016ZX05058-002) 作者简介: 谢涛(1981—), 男,高级工程师,主要研究方向为油套管腐蚀与防护。

Biography: XIE Tao (1981-), Male, Senior engineer, Research focus: casing corrosion and protection.

tial pressure is 0.1MPa) and H_2S (partial pressure is 0.0006 MPa), with both of them presenting uniform corrosion. Trace H_2S has improved the corrosion environment, leading less surface corrosion to 13Cr steel, which is almost no corrosion; Compared with corrosion rate between environments of single CO₂ and CO₂ / H_2S , the corrosion rate was reduced more than 60%. With the increase of testing time, the corrosion rate of several materials decreases in the form of power function. The long-term corrosion rates of N80, 1Cr and 3Cr materials are 0.023mm/a, 0.19 mm/a and 0.13mm/a respectively. Trace H_2S has obvious inhibition effect on CO₂ corrosion. 3Cr-N80 casing with over 69.983 kg/m can meet the requirements of casing strength after corrosion. **KEY WORDS:** CO₂; H_2S ; casing steel; corrosion mechanism; corrosion rate

石油天然气开采过程中,套管腐蚀与防护研究成为油田开发的重要课题。 CO_2 、 H_2S 、CI⁻等介质对油管、套管的腐蚀及油气开发造成了巨大损失^[1-3]。目前,国内外学者对 CO_2 或 H_2S 单一腐蚀机理认识得较为清晰,对于 CO_2 和 H_2S 共存条件下的腐蚀研究比较少且分散,没有形成完整的理论体系^[4-6]。

渤海某油田井下为 CO₂ 和 H₂S 共存的腐蚀环境, 依据现存的油套管选材图版,只能选择 13Cr 含量的 材质,大大增加了钻完井成本。为进一步优化该油田 的油套管材质,根据该油田的腐蚀环境进行腐蚀实 验,研究 N80、1Cr、3Cr、13Cr 不同材质套管钢在 CO₂ 和 H₂S 共存腐蚀环境的腐蚀行为,分析对比其 腐蚀速率和腐蚀产物形貌成分,探讨微量 H₂S 的存在 对油套管腐蚀的影响机理,为该油田套管设计提供理 论基础。在安全生产的前提下,合理选择套管材质, 保证油田经济效益最大化。

1 试验

1.1 材料与设备

试验材料选取 N80、1Cr、3Cr 和 13Cr 钢,取自 油田套管本体,如图 1 所示。试验设备包括 CWYF-1 型高温高压釜,FEI Quanta 200F 型扫描电镜,EDAX

图 1 腐蚀试验挂片 Fig.1 Casing steel samples of corrosion experiment 能谱仪, Bruker AXS D8 Focus X 射线衍射仪等。

1.2 试验条件

根据油田采出水常规分析结果,储层段地层水的 离子含量见表 1。为确保整个井筒安全,并探讨温度 对 CO₂和 H₂S 腐蚀机理的影响,分别进行 50、70、 85 ℃温度下的腐蚀试验。根据油田日产液量及高压 釜的最佳转速,确定试验流速为 0.77 m/s。该油田埋 深 2569 m,地层压力为 24.49 MPa,地层温度为 85 ℃, 地层饱和压力为 15.29 MPa,以此作为系统压力。根 据取出地层样天然气组分分析,确定 CO₂ 分压为 0.1 MPa, H₂S 分压为 0.0006 MPa,模拟 3 d 下的腐蚀 行为。

表 1 渤海某油田地层水离子含量

Tab.1 Ion content of formation water in an oilfield of the Bohai Sea						mg/L			
$C[Na^+]$	$C[K^+]$	$C[\operatorname{Ca}^{2^+}]$	C[Mg ²⁺]	$C[Cl^-]$	$C[SO_4^{2-}]$	$C[\mathrm{HCO}_3^-]$	总矿化度	pН	水型
3945	6116	220	94	5832	673	3276	20157	7.68	NaHCO ₃

1.3 试验过程

1)将取自油田套管本体的 N80、1Cr、3Cr 和 13cr 钢制成 50 mm×10 mm×3 mm 且一端有 6 mm 圆孔的 腐蚀挂片,用砂纸逐级打磨至 1200#,经去离子水冲 洗、丙酮除油、冷风干燥,将其固定在聚四氟乙烯挂 片架上,并置于高温高压釜内^[7-9]。

2)高压釜内通氮除氧,10h后通入CO2或CO2 和H2S的混合气体至设计压力,调整至预定流速与 温度。

3)打开电机,开始计时,直至设定好的试验时间^[10-11]。

4)试验结束,取出挂片,将其分为两类进行处 理。一类用体积比为 10:1 的稀盐酸清洗腐蚀产物膜, 清水、丙酮冲洗后,冷风吹至充分干燥。拍摄微距照 片,记录表面腐蚀情况,利用 NACE RP0775—2005 标准计算得到腐蚀速率。另一类进行 X 射线与能谱 分析,观察腐蚀形貌、得到腐蚀产物成分。

2 结果与分析

2.1 腐蚀形貌特征

针对单独 0.1 MPa CO2 腐蚀条件,对比了各材质

• 58 ·

钢在不同温度下去除腐蚀产物前的腐蚀形貌,见表2。 清洗产物膜后,N80 材质在 50 ℃条件下发现有沟槽 腐蚀(局部腐蚀),其他材质在 3 种温度条件下表现 为均匀腐蚀,表面状况良好,未发现点蚀。

对清洗腐蚀产物膜后挂片进行电镜扫描(以 50℃为例),如图2所示。N80材质局部腐蚀明显, 1Cr 材质未见局部腐蚀,但表面粗糙,3Cr 表面腐蚀 均匀,13Cr 材质腐蚀产物膜清洗后,表面光洁,打 磨痕迹清楚。利用能谱仪(EDAX)对各套管钢腐蚀 后表面产物进行分析,碳钢、低 Cr 钢产物膜表面未 出现 Cr 元素富集现象,3 Cr、13 Cr 钢产物膜表面出 现明显 Cr 峰。 表 2 单独 CO₂条件下各套管钢的腐蚀形貌 Tab. 2 Corrosion morphology of casing steels under single CO₂ condition

50 °C	70 °C	85 °C	腐蚀情 况描述
N80	0		点蚀
			均匀
lCr			腐蚀
3Cr	O	\bigcirc	均匀
Constitution of the second			腐蚀
13Cr	0	•	均匀
1301			腐蚀

N80 Fetters for the second se

图 2 挂片表面 SEM (电镜扫描)(50 ℃) Fig.2 Microscopic morphology (SEM) of casing steels (50 ℃)

对比了 0.1 MPa CO₂和 0.0006 MPa H₂S 共存条件 下不同材质钢的腐蚀形貌,测试温度为 50、70、85 °C, 从表 3 中可以看到,在含低 H₂S 环境下,碳钢和低 Cr 钢表面腐蚀程度差异小,为均匀腐蚀,未发现点 蚀。这说明微量 H₂S 的加入改善了挂片表面状况, 13Cr 钢表面腐蚀程度较小,金属挂片的表面十分光 亮,几乎未腐蚀。

对不同材料进行 SEM 电镜扫描,分析挂片产物 膜清洗后表面微观形貌,如图 3 所示。50 ℃环境下, 低 Cr 钢材质表面腐蚀程度低,与腐蚀环境含低浓度 H₂S 有关。3Cr 有局部斑点腐蚀,但未出现点蚀现象, 表面状况良好,均为均匀腐蚀。

表 3 CO2和 H2S 共存环境不同套管钢的腐蚀形貌

Tab. 3 Corrosion morphology of casing steels under $\mathrm{CO}_2/\mathrm{H}_2\mathrm{S}$ environment

50 °C	70 °C	85 °C	腐蚀情 况描述
1100		5	均匀
N80	Q		腐蚀
10	0	1	均匀
ICr	On The		腐蚀
20-	0		均匀
3Cr			腐蚀
13Cr	-	Contraction of	均匀
1501			腐蚀

图 3 CO₂和 H₂S 共存条件下产物膜清洗后表面显微形貌(50 ℃) Fig.3 Microscopic morphology of casing steels under CO₂/H₂S environment (50 ℃)

用能谱仪(EDAX)分析各套管钢腐蚀后表面产物的成分可知,腐蚀后 N80、1Cr、3Cr、13Cr 钢表面腐蚀产物主要由 Fe、Ni、C、S、O、As 等组成,即腐蚀产物主要为铁氧化物、硫化物、砷化物等,铁氧化物含量较高。1Cr、3Cr、13Cr 钢表面富集 Cr 元素,生成了含 Cr 腐蚀产物保护膜。

2.2 腐蚀速率

NACE RP0775—2005 给出金属均匀腐蚀速率 CR 计算公式,见式 1:

$$CR = \frac{3.65 \times 10^5 \times \Delta w}{A \times T \times D} \tag{1}$$

式中: *CR* 为均匀腐蚀速率, mm/a; Δw 为质量 损失, g; *A* 为挂片的表面积, mm²; *D* 为钢材的密度, g/cm³; *T* 为试验测试时间, d。

不同材质套管钢在单独 CO₂条件下,实验时间为 7 d,不同温度下的平均腐蚀速率如图 4 所示。由图 4 可知,随着温度的升高,N80、1Cr 和 3Cr 三种材质 的腐蚀速率均有显著增加,85 ℃达到最大。13Cr 钢 的腐蚀速率极低,约为 0.01 mm/a,腐蚀速率无明显 变化。

不同材质套管钢在 CO₂ 和 H₂S 共存条件下,实验时间为 7 d,平均腐蚀速率如图 5 所示(*P*[CO₂]=0.1 MPa;*P*[H₂S]=0.0006 MPa)。由图 5 可知,随着温度的升高,N80、1Cr、3Cr 钢的腐蚀速率仍呈现逐渐增加趋势,13Cr 钢几乎没有腐蚀。

图 4 单独 CO₂腐蚀条件下各套管钢的腐蚀速率 Fig.4 Corrosion rate of casing steels under single CO₂ corrosion conditions

图 5 CO_2 和 H_2S 共存条件下各套管钢的腐蚀速率 Fig.5 Corrosion rate of casing steels under CO_2 / H_2S environment

单独 CO₂ 与 CO₂/H₂S 共存条件下的腐蚀速率存 在较大差异,以 85 ℃挂片腐蚀试验为例。如图 6 所 (2)

• 61 •

示,85℃下,N80、1Cr、3Cr的腐蚀速率均有所降低,分别降低79%、67%、61%,平均降低69%,表明微量H₂S气体对CO₂腐蚀存在抑制作用。

油套管的长期腐蚀速率可根据短期测试结果进行 预测,该油田 CO₂和微量 H₂S 的环境中,几种材料表 面的腐蚀状况良好,以均匀腐蚀为主,未见明显点蚀 坑,确定材料是全面腐蚀状态。按照全面均匀腐蚀计 算长期的腐蚀腐蚀速率,能利用幂函数公式拟合:

 $\Delta w = At^B$

式中:*A*、*B*为根据实验数据得出常数;*t*为时间, d; Δ*w* 为损失质量, g。

基于 NACE RP0775—2005,根据幂函数特征拟 合长期腐蚀速率,结果如图 7 所示。呈现 N80>1Cr>3Cr 的趋势,计算可得实验拟合出的 N80、 1Cr、3Cr 三种材质的长期腐蚀速率分别为 0.23、0.19、 0.13 mm/a。

Fig.7 Prediction of long-term corrosion rate

2.3 套管强度校核

腐蚀环境下油套管选材需要综合油套管腐蚀预测、室内腐蚀模拟实验及钻井磨损预测结果进行校核。按照 API 标准规定的套管抗挤强度的计算方法,考虑油套管抗内压强度、抗拉强度、抗外挤强度。

$$p_{\rm br} = 0.875 \frac{2\sigma_{\rm s}}{(d_0/t)} \tag{3}$$

式中: p_{br} 为管柱的 API 抗内压强度, MPa。 σ_s

为材料的屈服极限, MPa; d_0 为管柱外径, mm; t为管柱壁厚, mm。

API 套管管体抗拉强度由式(4) 计算:

$$P_{\rm v} = 0.078 \ 54(D^2 - d^2)Y_{\rm P} \cdot 10^{-3} \tag{4}$$

式中: P_y 为管体的屈服强度,N; Y_p 为管体材料的最小屈服强度,kPa;D为套管的公称外径,cm;d 为套管的公称内径,cm。

根据套管的外径和径厚比,将套管的挤毁压力分 为屈服挤毁压力、塑性挤毁压力、塑弹性挤毁压力和 弹塑性挤毁压力四种类型。以塑性挤毁强度校核为 例,径厚比由式(5)确定,

$$\left(D_{\rm C} \,/\, \delta\right)_{\rm pt} = \frac{Y_{\rm p} \,(A - F)}{0.006 \,\,874 \,\,7C + Y_{\rm p} (B - G)} \tag{5}$$

则塑性挤毁强度校核公式为:

$$P_{\rm S} = Y_{\rm P} \left[\frac{A}{\left(D_{\rm C} \,/\, \delta \right)} - B \right] - 0.006 \,\,874 \,\,7C \tag{6}$$

式中: D_{C}/δ 为套管径厚比; Y_{P} 为套管的屈服强度, MPa; P_{S} 为套管的抗挤毁强度, MPa; $A \ B \ C$ 、 F、G均为跟屈服强度有关的参数, MPa。

随壁厚减少量的增加,抗拉与抗内压能力在下降,且下降值基本等比例于壁厚的相对减少量。抗外挤强度与壁厚损失不是同比关系,而是强度降低比壁厚降低的速度更快。在考虑套管强度计算时,最容易出现问题的是抗外挤强度。结合套管最大外压,套管外挤强度按照半掏空设计,最大外挤压载荷为15.5 MPa,绘制 80 钢级不同壁厚套管抗外挤强度随内壁腐蚀衰减规律,壁厚类型:11.99、11.05、10.03 mm,如图 8 所示。抗外挤强度与壁厚损失之间不是呈同比降低关系,随着壁厚损失的增加,抗外挤能力在急速下降,下降的比例要大于壁厚损失比例。

利用磨损预测软件对该油田开发井井眼轨迹进行了磨损量计算,防腐设计中按照最大磨损量 0.75 mm进行评估。结合不同材质腐蚀速率,得到考 虑磨损后线重为 59.56、64.027、69.983 kg/m 的 80 钢套管的套管腐蚀允量和套管使用年限,见表 4。按 **七日廿氏去竺庭幼公皇和侍田左阳**

表 4 不同初版县官腐蚀儿童和使用牛限 Tab.4 Corrosion allowance and service life of casings with different materials								
线重/ (kg·m ⁻¹)	腐蚀允量 – /mm	N80		1Cr-N80		3Cr-N80		
		腐蚀速率/ (mm·a ⁻¹)	使用年限/a	腐蚀速率/ (mm·a ⁻¹)	使用年限/a	腐蚀速率/ (mm·a ⁻¹)	使用年限/a	
59.56	0.55		2.39		2.89		4.23	
64.027	2.32	0.23	10.09	0.19	12.21	0.13	17.85	
69.983	3.24		14.09		17.05		24.92	
	线重/ (kg·m ⁻¹) 59.56 64.027 69.983	Tab.4 C 线重/ (kg·m ⁻¹) 腐蚀允量 - /mm 59.56 0.55 64.027 2.32 69.983 3.24	表 4 Tab.4 Corrosion allows 後重/ (kg·m ⁻¹) 腐蚀允量 /mm Na 万1 /mm 腐蚀速率/ (mm·a ⁻¹) 59.56 0.55 0.23 64.027 2.32 0.23 69.983 3.24 0.23	液体 外间初级套目形 Tab.4 Corrosion allowance and service l浅重/ (kg·m ⁻¹)腐蚀龙量 /mmN80 腐蚀速率/ (mm·a ⁻¹)		Relation of the service life of casings with different material different di differen	Ref 4 7/10/8/04 Efficience (C) E 4/10/9/04 Efficience (C) Efficience (C) E 4/10/9/04 Efficience (C) E 4/10/9/04 Efficience (C) Efficience (C) E 4/10/10/10/10/10/10/10/10/10/10/10/10/10/	

照开发周期 20 年计算, 套管材质需要选择 3Cr 材质, 线重 69.983 kg/m 以上, 80 钢级。

3 讨论

CO₂和H₂S共存条件下的腐蚀研究尚未形成完善 的理论体系,少量 H₂S 的存在会对 CO₂ 腐蚀有一定 影响。国内外学者针对两者共存腐蚀行为进行了研 究,周计明、白真权、张清等^[10-12]采取同等 CO₂分压, 研究不同 H₂S 气体分压对普通碳钢的影响,认为加入 H₂S 会导致局部腐蚀的发生。闫伟、周卫军等^[13-15] 探讨了 H₂S 分压恒定条件下,改变 CO₂ 分压分析普 通油井管钢的腐蚀影响规律。当 CO2 分压值达到 10.5 MPa时,腐蚀产物的颗粒较粗大,除去产物膜后, 未出现局部腐蚀。Sridhar Srinivasan 等^[16-18]对不同温 度及分压比条件下腐蚀产物的特点进行了探讨,根据 CO₂/H₂S分压比,划分为三个控制区:当CO₂/H₂S分 压比小于 20 时, H₂S 主导腐蚀环境; 当 CO₂/H₂S 分 压比介于 20~500 时, 两种腐蚀气体交替控制; 当 CO₂/H₂S分压比大于 500时, CO₂控制腐蚀过程。研 究表明,H₂S 对腐蚀速率的影响较为复杂,单独 CO₂ 腐蚀速率高于同等 CO₂分压下 CO₂和 H₂S 共存环境 中的腐蚀速率, CO2 和微量 H2S 共存环境中, 腐蚀 挂片表面状况良好, 佐证了少量 H₂S 的加入可以抑 制 CO2 腐蚀。从渤海该油田腐蚀实验结果来看,加入 微量 H₂S 后的腐蚀较单一 CO₂条件下的腐蚀更轻微, 也进一步验证了相关规律。

4 结论

1)碳钢在单独 CO₂条件下观测到了沟槽腐蚀, 其他材质表现为均匀腐蚀,表面状况良好,未发现点 蚀。加入微量 H₂S 后,碳钢和低 Cr 钢表面腐蚀程度 差异小,未发现点蚀,13Cr 钢表面腐蚀程度较小, 几乎不腐蚀。

2) 微量 H₂S 对几种材质的 CO₂ 腐蚀具有明显的 抑制作用,加入 0.0006 MPa 的 H₂S 后, CO₂ 腐蚀速 率降低 60%以上,表面状况转好。

3)考虑套管磨损,选3Cr套管管材可满足要求, 在安全前提下优选管材,降低成本。

参考文献:

- 艾志久,范钰伟,赵乾坤. H₂S 对油气管材的腐蚀及防 护研究综述[J]. 表面技术, 2015, 44(9): 108-112.
 AI Zhi-jiu, FAN Yu-wei, ZHAO Qian-kun. Review on H₂S corrosion of oil gas tubing and its protection[J]. Surface technology, 2015, 44(9): 108-112.
- [2] 李建平,赵国仙,王玉. 塔里木油田用油套管钢的静态腐蚀研究[J]. 中国腐蚀与防护学报,2004,24(4):230-233.
 LI Jian-pin, ZHAO Guo-xian, WANG Yu. Static corrosion of oilthimble used in TRIM oil field [J]. Journal of Chinese Society for Corrosion and Protection, 2004, 24(4):230-233.
- [3] 周波, 崔润炯. 浅谈 CO₂ 对油井管的腐蚀及抗蚀套管的开发现状[J]. 钢管, 2003, 32(1): 21-24.
 ZHOU Bo, CUI Run-jiong. Discussion on CO₂ corrosion of oil well tubes and current development of anti-corrosion casing[J]. Steel pipe, 2003, 32(1): 21-24.
- [4] 徐海升,李谦定,薛岗林,等. N80 油管钢在 CO₂/H₂S 介质中的腐蚀行为研究[J]. 天然气化工, 2009, 34(2): 51-54.
 XU Hai-sheng, LI Qian-ding, XUE Gang-lin, et al. Study

XU Hai-sheng, LI Qian-ding, XUE Gang-Iin, et al. Study on corrosion behavior of tubular steel N80 in CO_2/H_2S environment[J]. Natural gas chemical industry, 2009, 34(2): 51-54.

- [5] 李淑华,朱晏萱,毕启玲. H₂S 和 CO₂ 对油管的腐蚀机 理及现有防腐技术的特点[J]. 石油矿场机械, 2008, 37(2): 90-93.
 LI Shu-hua, ZHU Yan-xuan, BI Qi-ling. The corrosion and corrosion protection of the tubing in gas wells[J]. Oil field equipment, 2008, 37(2): 90-93.
- [6] KERMANI M B, MORSHED A. Carbon dioxide corrosion in oil and gas production: A compendium[J]. Corrosion, 2003, 59(8): 659-683.
- [7] 马丽萍, 王永清, 赵素惠. CO₂和 H₂S 在井下环境中共存时对油管钢的腐蚀[J]. 西部探矿工程, 2006(11): 50-52.
 MA Li-ping, WANG Yong-qing, ZHAO Su-hui. Coexis-

tence of CO_2 and H_2S corroding tubing under down hole environment[J]. West-China exploration engineering, 2006(11): 50-52.

[8] 林海, 许杰, 范白涛, 等. L80 钢在 CO₂/H₂S 腐蚀环境中的力学特性[J]. 表面技术, 2016, 45(5): 91-96.
 LIN Hai, XU Jie, FAN Bai-tao, et al. Mechanical properties of L80 steel in CO₂/H₂S environment[J]. Surface

technology, 2016, 45(5): 91-96.

 [9] 汪衍刚, 陈毅, 孙东征, 等. 几种热采井用油管钢在次 生 H₂S/CO₂ 环境中的腐蚀行为[J]. 腐蚀与防护, 2018, 39(6): 443-448.

WANG Yan-gang, CHEN Yi, SUN Dong-zheng, et al. Corrosion behavior of several thermal recovery well tubular steels in secondary H₂S/CO₂ environment[J]. Corrosion & protection, 2018, 39(6): 443-448.

[10] 周计明. 油管钢在含 CO₂/H₂S 高温高压水介质中的腐 蚀行为及防护技术的作用[D]. 西安: 西北工业大学, 2002.

ZHOU ji-ming. Corrosion behavior of tubing steel in high temperature and high pressure water containing CO₂/H₂S and the role of protection technology[D]. Xi'an: Northwestern Polytechnical University, 2002.

 [11] 白真权,李鹤林,刘道新,等. 模拟油田 CO₂/H₂S 环境 中 N80 钢的腐蚀及影响因素研究[J]. 材料保护, 2003, 36(4): 32-34.
 BAI Zhen-quan, LI He-lin, LIU Dao-xin, et al. Corrosion

factors of N80 steel in simulated CO_2/H_2S environment[J]. Journal of materials protection, 2003, 36(4): 32-34.

[12] 张清,李全安,文九巴,等. CO₂/H₂S 对油气管材的腐 蚀规律及研究进展[J]. 腐蚀与防护,2003,24(7): 277-281.

> ZHANG Qing, LI Quan-an, WEN Jiu-ba, et al. Progress in research on CO₂/H₂S corrosion of tubular goods[J]. Corrosion & protection, 2003, 24(7): 277-281.

- [13] 周卫军, 郭瑞, 张勇. CO₂ 分压对 SM80SS 套管钢在 CO₂/H₂S 共存环境中的高温高压腐蚀行为影响[J]. 全 面腐蚀控制, 2009, 23(8): 20-23. ZHOU Wei-jun, GUO Rui, ZHANG Yong. CO₂ partial pressure influnce on corrosion behavior of SM80SS super anti-sulfide tubing steel in carbon dioxide and hydrogen sulfide concomitant environment[J]. Total corrosion control, 2009, 23(8): 20-23.
- [14] 闫伟,邓金根,董兴亮. 油管钢在 CO₂/H₂S 环境中的腐 蚀产物及腐蚀行为[J]. 腐蚀与防护, 2011, 32(3): 193-196.
 YAN Wei, DENG Jin-gen, DONG Xing-liang. Corrosion

products and corrosion behavior of tubing steel in CO_2/H_2S environment[J]. Corrosion & protection, 2011, 32(3): 193-196.

- [15] 林海, 许杰, 幸雪松, 等. L80 油管钢在 CO₂/H₂S 环境 中的腐蚀行为[J]. 表面技术, 2016, 45(5): 84-90.
 LIN Hai, XU Jie, XING Xue-song, et al. Corrosion behavior of L80 tubing steel in CO₂/H₂S environment [J].
 Surface technology, 2016, 45(5): 84-90.
- [16] SRINIVASAN S, TEBBAL S. Critical factors in predicting CO₂/H₂S corrosion in multiphase systems[R]. NACE 98038, 1998.
- [17] SCHMITT G. Fundamental aspects of CO₂ metal loss corrosion—Part II: Influence of different parameters on CO₂ corrosion mechanisms[R]. NACE 06112, 2006.
- [18] GUENTER S. Influence of different parameters on CO₂ corrosion mechanism[R]. NACE-2015-6033, 2015.