重大工程装备

AIN 覆铜板盐雾环境下的退化行为研究

王旋,吴护林,李忠盛,宋凯强,丛大龙,黄安畏,

张敏, 丁星星, 彭冬, 白懿心, 魏子翔

(西南技术工程研究所,重庆 400039)

摘要:目的 研究 AIN 覆铜板在盐雾环境下的性能退化及其微观机制。方法 采用交替喷雾和干燥方法对 AIN 覆铜板进行 15 周期的中性盐雾试验,并在第 1、3、6、10、15 周期时检测其相关性能。主要通过击穿电压 测试、介电性能测试和导热性能测试等方法,分别评价 AIN 覆铜板的电绝缘特性、介电损耗及导热系数, 并通过扫描电镜和能谱测试对试样表面/截面微观形貌和元素变化进行分析。结果 AIN 覆铜板导热系数和击 穿电压随盐雾试验周期的增长而逐渐退化,最大退化率分别为 13.2%和 73.8%。介电损耗明显增加,盐雾试 验 15 周期后,在低频区域的最大值约为 1.3。Cu 电极发生明显腐蚀,生成大量绿色腐蚀产物,导致表面 Ni-P 镀层脱落失效。H₂O 分子扩散进入 AIN 陶瓷内部,在局部区域造成陶瓷水解,逐渐形成微裂纹。结论 盐雾 试验过程中,Ni-P 镀层逐渐开裂剥落, Cu 电极表面最终形成大面积疏松多孔的腐蚀产物层。H₂O、Cl、Na⁺ 等逐渐溶解扩散进入 AIN 陶瓷,导致陶瓷中空位、裂纹、杂质缺陷浓度增加,二者都会增强导热过程中的 声子-缺陷散射,进而导致 AIN 覆铜板导热系数退化。

关键词: AlN 覆铜板; 盐雾; 导热系数; 击穿电压; 腐蚀产物; 声子-缺陷散射 中图分类号: TJ04 文献标识码: A 文章编号: 1672-9242(2023)07-0142-08 DOI: 10.7643/ issn.1672-9242.2023.07.018

Degradation Behavior of Copper Metallized Aluminum Nitride in Salt Spray Environment

WANG Xuan, WU Hu-lin, LI Zhong-sheng, SONG Kai-qiang, CONG Da-long, HUANG An-wei, ZHANG Min, DING Xing-xing, PENG Dong, BAI Yi-xin, WEI Zi-xiang

(Southwest Institute of Technology and Engineering, Chongqing 400039, China)

ABSTRACT: The work aims to study the degradation behavior and the corresponding micro-mechanism of copper metallized AlN in salt spray environment. A total of 15 cycles of neutral salt spray experiment were carried out on copper metallized AlN by alternate spray and drying methods, and the relevant properties were tested at the 1st, 3rd, 6th, 10th and 15th cycles. The electrical insulation characteristics, dielectric loss and thermal conductivity of copper metallized AlN were evaluated by breakdown voltage test, dielectric property test and thermal conductivity test. The surface/section morphology and element change of the samples were analyzed by SEM and EDS. The thermal conductivity and breakdown voltage of copper metallized AlN gradually

Corresponding author: ZHANG Min (1986-), Female, Doctor.

WANG Xuan, WU Hu-lin, LI Zhong-sheng, et al. Degradation Behavior of Copper Metallized Aluminum Nitride in Salt Spray Environment[J]. Equipment Environmental Engineering, 2023, 20(7): 142-149.

收稿日期: 2022-11-16; 修订日期: 2022-11-29

Received: 2022-11-16; Revised: 2022-11-29

作者简介: 王旋 (1996—), 男, 硕士。

Biography: WANG Xuan (1996-), Male, Master.

通讯作者:张敏(1986—),女,博士。

引文格式: 王旋, 吴护林, 李忠盛, 等. AIN 覆铜板盐雾环境下的退化行为研究[J]. 装备环境工程, 2023, 20(7): 142-149.

degraded with the salt spray experiment period, and the maximum degradation rates was 13.2% and 73.8%, respectively. The dielectric loss increased obviously, and the maximum value was about 1.3 in the low frequency region after 15 cycles. The Cu electrode was obviously corroded, producing a large number of green corrosion products, which led to the failure of Ni-P coating on the surface. H₂O diffused into the AlN ceramics, causing ceramic hydrolysis in local areas and gradually forming microcracks. During the salt spray experiment, the Ni-P coating gradually crack and peel off, and a large area of loose porous corrosion product layer is finally formed on the surface of the Cu electrode. H₂O, Cl⁻, Na⁺ gradually dissolve and diffuse into AlN ceramics, resulting in the increase of vacancy, crack and impurity defect concentration in ceramics. Both of them enhance the phonon-defect scattering in the process of thermal conductivity, which leads to the degradation of thermal conductivity of copper metallized AlN.

KEY WORDS: copper metallized AlN; salt spray; thermal conductivity coefficient; breakdown voltage; corrosion products; phonon-defect scattering

高性能武器装备的快速发展促使功率电子器件 向着高可靠、高频、高功率、高密度等方向发展, 传统印制电路板(Printed Circuie Board, PCB)逐渐 无法适应现有工况下的应用要求^[1]。因此,高导热 高绝缘陶瓷材料逐渐成为电子器件高可靠封装的重 要发展方向。AlN 陶瓷因其四面体纤锌矿结构而具 有优良的热学、力学性能^[2](理论热导系数为 180~ 260 W·m⁻¹·K⁻¹,抗弯强度为 290~350 MPa),同时通 过活性金属钎焊技术制备的 AlN 覆铜板能保持更加 优异的导热性能,有利于实现密封封装、适用于电子 元件搭载以及输出/输入端口的连接,这些优势使 AlN 覆铜板已逐渐成为功率电子器件用理想的封装基板 材料。

武器装备所处不同服役区域的环境状况不尽相 同,这导致 AIN 覆铜板也将面临如盐雾气氛、高低 温交替、高湿度等典型环境因素,盐浓度、温度冲击、 湿度等环境因子将加速其宏观性能和微观结构的退 化与损伤,将严重影响武器装备工作可靠性和服役寿 命。目前针对 AIN 覆铜板封装材料环境退化行为已 有一定研究,但主要集中在其温度耐受性和水解行为 方面。如采用极端温度和高低温循环试验研究 AIN 覆铜板的结构和导热系数稳定性,研究结果表明,空 间极端低温环境导致陶瓷基体出现微裂纹而破碎,高 低温循环会导致覆铜板弯曲变形,导热系数下降^[3-5]。 在高湿度环境下 AIN 陶瓷退化行为的研究表明, AIN 陶瓷易与水电解产生的羟基反应,形成 Al(OH)3,导 致陶瓷晶格内氧浓度增加,导热系数等理化参数明显 退化,严重限制其应用^[6-8]。目前,针对盐雾环境下 Cu 电极、AIN 陶瓷基体微观结构的退化行为及其与 宏观热学、电学性能退化之间的关联性的相关研究未 见报道。为此,本试验采用高导热 AIN 覆铜板进行 长时中性盐雾试验,探索其在盐雾环境下结构与性能 的退化行为,分析其结构与性能退化的微观机制,进 一步丰富 AIN 覆铜板环境适应性研究体系。同时, 性能退化规律可作为陶瓷覆铜板封装材料使用寿命 预测的参考依据,对指导此类封装材料在典型服役环 境下的防护技术发展具有一定研究意义。

1 试验

1.1 材料

试验用 AIN 覆铜板如图 1 所示,试样尺寸为 20 mm×20 mm×1.25 mm,其中,AIN 陶瓷厚度约为 0.6 mm,表面 Cu 电极厚度约为 0.3 mm,Cu 电极采 用钎焊工艺与陶瓷基体进行连接。同时,铜电极表面 先后沉积有 Ni-P 镀层和 Au 镀层。

图 1 AIN 覆铜板结构 Fig.1 Structure diagram of copper metallized AIN

1.2 盐雾试验

AIN 覆铜板中性盐雾试验参照 GJB 150.11A 进行,盐溶液质量分数为 5%±1%,喷雾阶段温度为 (35±2)℃,盐溶液沉降率为 1~3 mL/(80 cm²·h),喷雾 方式为交替进行,24 h 喷盐雾和 24 h 干燥作为 1 个 盐雾试验周期。盐雾试验取样周期分别为 1、3、6、10 和 15,每个周期取样后,检测试样微观形貌、热学性能、电学性能的变化。

1.3 表征试验

采用 XL30ESEM-TMP 型扫描电镜,观察试样表 面和截面的微观形貌及元素分布,其中截面样品采用 完整 AIN 覆铜板进行盐雾试验后,再使用金刚石刀 片进行切割,最后进行磨抛制得。采用宽温宽频 4294A 阻抗谱仪测试 AIN 覆铜板介电容量、阻抗和介 质损耗,进而计算出介电损耗。采用 LFA447/2 型激 光热分析仪测定 AIN 覆铜板材料的热扩散系数和比 热容,计算得出导热系数。采用 ZJC-50 kV 击穿电压 测试仪测定 AIN 覆铜板的击穿场强参数。

2 结果与分析

2.1 宏观形貌

不同盐雾周期 AIN 覆铜板的宏观形貌变化如图 2 所示。原始样品 Cu 电极表面光亮、平整、无瑕疵; 盐雾试验 1 周期后, AIN 覆铜板表面生成少量绿锈; 试验 3 周期后,电极表面绿锈区域面积增加,整体颜 色变暗;试验 6 周期后,电极层边缘区域表面出现小 面积的锈斑;试验 10 周期,电极层表面锈斑大面积 扩张,呈现青蓝色;试验 15 周期,电极层表面绿锈 区域明显增加,呈现深绿色。Cu 电极表面的腐蚀程 度随盐雾试验时间延长明显加剧,这可能是在中性盐 雾试验下 Cu 电极发生腐蚀生成"铜绿"。

2.2 微观形貌

不同盐雾周期下 AIN 覆铜板表面 Cu 电极的微观 形貌如图 3 所示。初始试样 Cu 电极表面 Ni-P 镀层呈 现胞状组织结构, 胞粒之间排布紧密, 未观察到气孔、 裂纹等缺陷^[9-10];盐雾试验 1 周期后,在 Cu 电极表 面部分区域观察到"开裂"现象, 且裂缝处能观察到 少量絮状物质;试验6周期后,在电极表面观察到部 分层片状物质和球状腐蚀产物;试验15周期后,电 极表面被大量细小球状腐蚀产物覆盖,形成一定厚度 的腐蚀层,同时部分区域腐蚀产物会完全剥落,露出 粗糙的Cu基体表面。这表明随着盐雾试验周期延长, Cu电极基体表面Ni-P镀层开始出现裂缝,导致Cu 电极基体与腐蚀介质接触,生成腐蚀产物(见图3b)。 随后Cu电极基体持续发生腐蚀,大量疏松多孔状腐 蚀产物向外生长,使表面Ni-P镀层进一步开裂、破 碎,呈现层片状形态(见图3c)。最终,Cu电极表面 形成大面积的腐蚀区域,腐蚀产物"铜绿"呈现细小 球状形态,其主要组成成分可能为Cu的氧化物和氯 化物。

通过 EDX 测试进一步分析盐雾试验过程中 Cu 电极表面元素含量的变化,如图 4 所示。初始时,试 样电极表面主要元素为 Ni、P 和 Au,EDS 信号来源 于 Cu 电极表面质量良好的 Ni-P 镀层及 Au 镀层;盐 雾试验 1 周期后,扫描区域 O 元素含量急剧增加, 这可能是由于表面 Ni-P 镀层裂纹等缺陷处腐蚀介质 渗透,导致 Cu 电极基体发生腐蚀,同时也吸附了环 境中大量 O 元素;盐雾试验 6 周期后,检测出高含 量的 Cu、O 和 Cl 元素,这可能是由于 Cu 电极腐蚀 产生的 Cu₂O、Cu₂(OH)₃Cl 等腐蚀产物向外生长导致, 与任海滔等的报道一致^[11],而 Ni 和 P 元素含量降

图 2 不同盐雾周期 AIN 覆铜板的宏观形貌变化

Fig.2 Macroscopic morphology change of copper metallized AlN under different salt spray cycles: a) initial; b) 1 cycle; c) 3 cycle; d) 6 cycle; e) 10 cycle; f) 15 cycle

图 3 不同盐雾周期下 AIN 覆铜板表面 Cu 电极 SEM 图谱

Fig.3 SEM of Cu electrode on the surface of copper metallized AlN under different salt spray cycles: a) initial; b) 1 cycle; c) 6 cycle; d) 15 cycle

图 4 不同盐雾周期下 AIN 覆铜板表面 Cu 电极 EDX 图 Fig.4 EDX of Cu electrode on the surface of copper metallized AlN under different salt spray cycles

低,可能是由于 Cu 基体产生的腐蚀产物会导致 Ni-P 镀层部分失效剥落; 盐雾试验 15 周期后, 电极表面 部分区域生成的腐蚀介质会完全剥落,露出 Cu 电极 基体。

不同盐雾周期下 AIN 覆铜板截面的微观形貌如 图 5 所示。初始和盐雾试验 15 周期后, Ni-P 镀层与 Cu电极均结合紧密,而盐雾试验15周期试样电极表 面部分区域观察到腐蚀坑,这是由于 Cl⁻等腐蚀介质 导致 Cu 电极局部区域发生腐蚀(见图 5a、b)。陶瓷/ 金属钎焊界面区域,盐雾试验前后都保持着良好的界 面结合状态,无分层、开裂等退化现象,这说明钎料

a初始-电极截面区域

层与金属、陶瓷层界面润湿效果良好,且具有良好的 化学稳定性[12-13],试验周期内钎焊界面的微观状态无 明显退化。盐雾试验 15 周期后,在 AIN 陶瓷截面区 域,观察到少部分沿着 AIN 晶粒延伸扩展的细小裂 纹,说明 AIN 陶瓷基体内部微观结构发生了一定程 度的退化。这可能是由于长时盐雾试验过程中,H₂O 会沿着宏观孔隙、晶界等缺陷扩散进入陶瓷内部,在 局部区域造成 AIN 陶瓷水解,逐渐形成微裂纹(见 图 5c、d)^[14-15]。

进一步对 AIN 陶瓷基体截面进行能谱分析,如 图 6 所示。初始试样中, O 元素的原子分数为 3.89%,

b 盐雾15周期-电极截面区域

Cu电极

钎焊界面

AIN陶瓷

图 6 盐雾试验前后 AlN 陶瓷截面 EDS 图谱 Fig.6 Section EDS of AlN ceramics before and after salt spray experiment: a) initial; b) 15 cycles

且 mapping 图显示 O 元素分布边界清晰,信号主要 来源于 AlN 陶瓷烧结助剂(图 6a 中 Y₂O₃),而陶瓷 孔隙及其周围 O 元素信号弱。盐雾试验 15 周期后, 能谱分析显示,O 元素的原子分数增加为 7.54%,同 时检测到了 Cl 和 Na 元素,其原子分数分别为 0.08% 和 0.23%。mapping 图显示,O 元素呈现一定弥散状 态分布,除了存在于 AlN 陶瓷烧结助剂处,在一些 孔隙及孔隙边缘处都检测出明显的 O 元素信号。这 可能是由于在盐雾试验过程中,H₂O、Na⁺、Cl⁻等逐 渐扩散进入陶瓷基体内,并在孔隙等缺陷处富集,而 导电粒子在陶瓷内部富集会一定程度恶化 AlN 陶瓷 的电绝缘特性^[16]。

2.3 击穿电压

不同盐雾周期下 AIN 覆铜板击穿电压曲线如图 7 所示。AIN 覆铜板击穿电压参数随盐雾试验周期呈现 明显的下降规律,初始试样具有良好的电绝缘特性, 击穿电压为 33.62 kV/cm。第 15 周期时,试样击穿电 压下降为 8.80 kV/cm,击穿电压最大退化率为 73.8%。 陶瓷材料电绝缘特性很大程度与其内部结构相关,陶 瓷内部孔隙率较高或者存在微裂纹都将使得漏电流 增大,导致陶瓷击穿电压下降^[17-18]。同时,长期盐雾 环境作用下,CI⁻和 Na⁺迁移扩散进入 AIN 陶瓷内部, 在局部区域发生聚集,增加局部区域的电导性能,形 成放电通道,最终导致 AIN 陶瓷更易被击穿,综合 导致其击穿电压显著下降。

图 7 不同盐雾周期下 AIN 覆铜板的击穿电压曲线 Fig. 7 Breakdown voltage of copper metallized AlN under different salt spray cycles

2.4 介电性能

不同盐雾周期下 AIN 覆铜板介电损耗随频率变 化曲线如图 8 所示。随着盐雾试验周期的延长, AIN 覆铜板的介电损耗明显增加,且在低频区域介电损耗 的退化更加明显。盐雾 15 周期后, AIN 覆铜板的最 大介电损耗达 1.3 左右。陶瓷材料中杂质元素、孔隙、 微裂纹、晶间相等因素会显著影响其介电性能,尤其 是增加介电损耗^[19]。通过 AIN 陶瓷截面能谱分析可 知,盐雾试验过程中,环境中的 H₂O、Cl⁻、Na⁺会扩 散进入陶瓷内部。H₂O 会导致部分区域的 AIN 晶粒 表面发生水解^[20],而逐渐形成裂纹等缺陷; Cl⁻、Na⁺ 等在陶瓷内部缺陷处富集,会显著增加 AIN 覆铜板 的电导损耗,综合导致介电损耗明显加剧^[21]。

AlN under different salt spray cycles

2.5 导热系数

不同盐雾周期下 AIN 覆铜板导热系数(25℃)的 变化曲线如图 9 所示。初始 AIN 覆铜板展示出良好的 热学性能,导热系数为 203.36 W/(m·K)。盐雾试验 15 周期后,下降为 178.37 W/(m·K)。在盐雾试验 10 周期 时,导热系数退化率最大为 13.2%。整体来看,AIN 覆 铜板导热系数退化明显,下降速率呈现出先快再慢的规 律,最大退化幅度时已接近失效值(按相关标准规定, AIN 陶瓷板室温导热系数应在 170~220 W·m⁻¹·K⁻¹)。

Fig. 9 Thermal conductivity curve of copper metallized AlN under different salt spray cycles (25 ℃)

AIN 覆铜板导热系数主要受 Cu 电极热阻、AIN 陶瓷基体热阻和 Cu/AIN 界面热阻 3 部分的影响。其

中 Cu 电极主要依靠自由电子热运动进行热传导, AIN 陶瓷基体则主要依靠声子运动进行热传导, 而在 AIN 基体与 Cu 电极界面之间的钎焊界面,则是电子导热 和声子传热综合的多种模式的热传导,存在一定的界面热阻。初始试样良好的导热性能主要得益于 Cu 电极和 AIN 陶瓷二者兼具有高的本征导热系数, 同时 二者间焊接接头致密,结合良好,无明显裂纹或孔隙等缺陷。

盐雾试验过程中,钎焊界面未观察到明显腐蚀、 开裂等微观结构退化现象,同时由于钎料主要成分为 Ti、Ag等化学性质稳定元素,环境适应性强,因此 其对 AlN 覆铜板导热系数退化影响较小。AlN 覆铜板 导热系数退化则主要源于 Cu 电极表面腐蚀和 AlN 陶 瓷基体微观结构退化 2 部分,其导热系数退化机理如 图 10 所示。

图 10 AlN 覆铜板盐雾试验后导热系数退化机理 Fig.10 Thermal conductivity coefficient degradation mechanism of copper metallized AlN after salt spray experiment

Cu 电极层表面腐蚀后形成疏松的腐蚀产物层, 覆盖于电极表面。由于腐蚀产物以金属氯化物和氧化 物为主,热量传输以声子传热为主导,又因腐蚀产物 层为多孔疏松结构^[22],因此热量由环境向 Cu 电极内 传导过程中存在一定的声子-缺陷散射现象。同时, 腐蚀产物层与 Cu 基体界面处则是通过声子与自由电 子热交换进行热量传导,降低了整体热量传递效率。 综合来看,腐蚀产物层增加了 Cu 电极热阻,进而导 致 Cu 电极导热系数下降。

文献[20,23]表明,在高湿度环境下,AIN 陶瓷表 面会发生缓慢的水解过程,生成非晶态的 AlOOH、 Al(OH)₃等物质,水解产物分解则会形成 Al₂O₃ 膜层 等,Al₂O₃ 膜层扩散溶入 AIN 陶瓷晶格中会形成一定 浓度的 Al 空位。在盐雾试验过程中,由于环境中H₂O、 Cl⁻、Na⁺扩散进入 AIN 陶瓷基体内部,一方面,H₂O 会引起部分 AIN 晶粒水解,通过分解、扩散形成一 定浓度的 O 缺陷和 Al 空位缺陷,AIN 陶瓷内空位缺 陷浓度增加,同时裂纹缺陷浓度也增加;另一方面, Cl⁻、Na⁺扩散进入 AIN 陶瓷内部也增加了杂质缺陷浓 度。二者综合导致 AIN 陶瓷传热过程中声子-缺陷散 射截面增大,降低了 AIN 陶瓷基体内声子平均自由程,从而导致陶瓷基体热导率下降。

3 结论

1)对 AIN 覆铜板进行 15 周期中性盐雾试验, 导热系数、击穿电压等热学和电学参数发生明显退 化,导热系数最大退化率为 13.2%,击穿电压最大退 化率为 73.8%。

2)Cu电极腐蚀形成的疏松多孔腐蚀层会加剧声子-缺陷散射,环境中的H₂O、Cl⁻、Na⁺扩散进入AIN 陶瓷基体,会增加基体内部缺陷浓度,加剧声子-缺陷散射,二者综合作用导致AIN 覆铜板导热系数退化。

参考文献:

- CHASSERIO N, GUILLEMET-FRITSCH S, LEBEY T, et al. Ceramic Substrates for High-Temperature Electronic Integration[J]. Journal of Electronic Materials, 2009, 38(1): 164-174.
- [2] 吕帅帅,周宇翔,倪威,等.高导热氮化铝陶瓷制备技术的研究现状及发展趋势[J].陶瓷学报,2018,39(6):672-675.

LÜ Shuai-shuai, ZHOU Yu-xiang, NI Wei, et al. Research Status and Development Trend of Preparation Technologies for High Thermal Conductivity Aluminum Nitride Ceramics[J]. Journal of Ceramics, 2018, 39(6): 672-675.

- [3] 郝洋洋,林颖菲,高唯,等. 热处理对氮化铝化学镀铜 组织性能的影响[J]. 表面技术, 2020, 49(2): 288-294.
 HAO Yang-yang, LIN Ying-fei, GAO Wei, et al. Influence of Heat Treatment on the Microstructure and Properties of Electroless Copper Plating on AlN Substrate[J]. Surface Technology, 2020, 49(2): 288-294.
- [4] 张珊珊,杨会生,颜鲁春,等.直接覆铜陶瓷板界面及 其高温行为研究[J].真空电子技术,2016(5):1-6. ZHANG Shan-shan, YANG Hui-sheng, YAN Lu-chun, et al. Research on Metallization and Interface Behavior of Direct Plated Copper Ceramic Substrates[J]. Vacuum Electronics, 2016(5): 1-6.
- [5] 何端鹏,高鸿,张静静,等. 氮化铝覆铜板在空间热场 下热学性能的模拟仿真及实验验证[J]. 无机材料学报, 2019, 34(9): 947-952.
 HE Duan-peng, GAO Hong, ZHANG Jing-jing, et al. Simulation and Experimental Verification of Thermal Property for Aluminum Nitrides and Copper Clad Laminates under Space Thermal Environment[J]. Journal of Inorganic Materials, 2019, 34(9): 947-952.
 [6] GRAZIANI T BELLOSI A Degradation of Dense AlN
- [6] GRAZIANI T, BELLOSI A. Degradation of Dense AlN Materials in Aqueous Environments[J]. Materials Chemistry and Physics, 1993, 35(1): 43-48.
- [7] BARTEL C J, MUHICH C L, WEIMER A W, et al. Aluminum Nitride Hydrolysis Enabled by Hydroxyl-Mediated Surface Proton Hopping[J]. ACS Ap-

plied Materials & Interfaces, 2016, 8(28): 18550-18559.

- [8] WANG En-hui, CHEN Jun-hong, HU Xiao-jun, et al. Evolution of Aluminum Hydroxides at the Initial Stage of Aluminum Nitride Powder Hydrolysis[J]. Ceramics International, 2016, 42(9): 11429-11434.
- [9] AVELAR-BATISTA J C, SPAIN E, LETCH M, et al. Improvements on the Wear Resistance of High Thermal Conductivity Cu Alloys Using an Electroless Ni-P Coating Prior to PVD Deposition[J]. Surface and Coatings Technology, 2006, 201(7): 4052-4057.
- [10] 伊洪丽,包翠敏,陈蕊,等.化学镀 Ni-P 及 Ni-W-P 镀 膜组织及性能对比研究[J].材料保护,2022,55(9):102-108.
 YI Hong-li, BAO Cui-min, CHEN Rui, et al. Comparative Study on Microstructure and Properties of Electroless Ni-P and Ni-W-P Coatings[J]. Materials Protection, 2022, 55(9):102-108.
- [11] 任海滔, 符策鹄, 李文军, 等. T2 铜在不同海水飞溅条 件下的腐蚀性能差异[J]. 装备环境工程, 2019, 16(4): 20-25.
 REN Hai-tao, FU Ce-hu, LI Wen-jun, et al. Different

Corrosion Behaviors of T2 Copper in Different Splash Conditions[J]. Equipment Environmental Engineering, 2019, 16(4): 20-25.

- [12] 曾祥勇, 许海仙, 朱家旭, 等. Ag-Cu-Ti 系合金钎焊陶 瓷覆铜基板界面结合强度研究进展[J]. 陶瓷学报, 2022, 43(4): 539-550.
 ZENG Xiang-yong, XU Hai-xian, ZHU Jia-xu, et al. Recent Advances in Improving Interfacial Bonding Strength of Ag-Cu-Ti Series Alloys Brazed Copper/Ceramic Substrates[J]. Journal of Ceramics, 2022, 43(4): 539-550.
- [13] 朱成俊,李成思,董雪花.采用两种银基活性钎料钎焊 AlN 陶瓷与可伐合金的接头组织与性能[J].焊接学报, 2018, 39(10): 16-19.
 ZHU Cheng-jun, LI Cheng-si, DONG Xue-hua. Microstructure and Strength of AlN/Kovar Alloy Joints Brazed

with Two Ag-Based Active Filler Metals[J]. Transactions of the China Welding Institution, 2018, 39(10): 16-19.

- [14] WANG Qi, OLHERO S M, FERREIRA J M F, et al. Hydrolysis Control of AlN Powders for the Aqueous Processing of Spherical AlN Granules[J]. Journal of the American Ceramic Society, 2013, 96(5): 1383-1389.
- [15] 何端鹏,黄雪吟,任刚,等.高热导电绝缘氮化铝陶瓷 在宇航器件中的应用:概述、挑战和展望[J]. 硅酸盐学

报, 2022, 50(6): 1701-1714.

HE Duan-peng, HUANG Xue-yin, REN Gang, et al. Development on High Thermal Conductive and Electric Insulative AlN Ceramics in Aerospace Devices[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1701-1714.

- [16] MCPHERSON J W, KHAMANKAR R B. Molecular Model for Intrinsic Time-Dependent Dielectric Breakdown in SiO₂dielectrics and the Reliability Implications for Hyper-Thin Gate Oxide[J]. Semiconductor Science and Technology, 2000, 15(5): 462-470.
- [17] JIANG Sheng-lin, ZHANG Ling, ZHANG Guang-zu, et al. Effect of ZR: SN Ratio in the Lead Lanthanum Zirconate Stannate Titanate Anti-Ferroelectric Ceramics on Energy Storage Properties[J]. Ceramics International, 2013, 39(5): 5571-5575.
- [18] YANG Le-tao, KONG Xi, LI Fei, et al. Perovskite Lead-Free Dielectrics for Energy Storage Applications[J]. Progress in Materials Science, 2019, 102: 72-108.
- [19] 何秀兰,施磊, 巩庆东,等. 热处理对 AIN 陶瓷的热导 率及介电性能的影响[J]. 硅酸盐学报, 2015, 43(9): 1186-1191.
 HE Xiu-lan, SHI Lei, GONG Qing-dong, et al. Effect of Heat Treatment on Thermal Conductivity and Dielectric Properties of AIN Ceramics[J]. Journal of the Chinese Ceramic Society, 2015, 43(9): 1186-1191.
- [20] LIU Yao-cheng, ZHOU He-ping, WU Yin, et al. Improving Thermal Conductivity of Aluminum Nitride Ceramics by Refining Microstructure[J]. Materials Letters, 2000, 43(3): 114-117.
- [21] KUME S, YASUOKA M, OMURA N, et al. Effects of MgO Addition on the Density and Dielectric Loss of AlN Ceramics Sintered in Presence of Y₂O₃[J]. Journal of the European Ceramic Society, 2005, 25(12): 2791-2794.
- [22] 符策鹄,任海滔,姚华,等.曝晒位置对纯铜热带海洋 大气环境腐蚀性能的影响研究[J].装备环境工程, 2017,14(6):116-121.
 FU Ce-hu, REN Hai-tao, YAO Hua, et al. Exposure Position Influences on the Corrosion Resistance of the T2 Copper in Tropic Marine Atmosphere[J]. Equipment Environmental Engineering, 2017, 14(6): 116-121.
- [23] KOCJAN A. The Hydrolysis of AlN Powder a Powerful Tool in Advanced Materials Engineering[J]. The Chemical Record, 2018, 18(7/8): 1232-1246.

责任编辑:刘世忠