基于粒子群算法的钢丝网垫隔振器参数识别

王威,王轲,万竞择

(南京航空航天大学 机械结构力学及控制国家重点实验室,南京 210016)

摘要:目的 证明粒子群优化算法对钢丝网垫隔振器参数识别的有效性和准确性。探究不同的加载条件对钢 丝网垫元件力学性能的影响。方法 对钢丝网垫元件进行正弦加载试验,获取试验响应数据。以双折线模型 对钢丝网垫的力学性能进行描述,建立隔振器的参数识别方程,应用粒子群算法和试验响应数据识别出模 型参数,并研究不同加载条件下识别参数的变化规律。结果 用识别出的参数计算绘制的迟滞回线和试验结 果吻合较好。改变激励幅值和频率,钢丝网垫的一次刚度、三次刚度、滑移刚度、等效阻尼均发生规律性 变化,而改变钢丝网垫所受静载,曲线变化极为微小。结论 研究证明了粒子群优化算法对钢丝网垫隔振器 参数识别的有效性和准确性,是一种有工程应用价值的参数识别方法。 关键词:钢丝网垫;双折线模型;粒子群算法;参数识别;迟滞回线;非线性力学

中图分类号: TJ85 文献标志码: A 文章编号: 1672-9242(2024)09-0093-07 DOI: 10.7643/issn.1672-9242.2024.09.012

Parameter Identification of Steel-net Pad Vibration Isolator Based on Particle Swarm Optimization Algorithms

WANG Wei, WANG Ke, WAN Jingze

(State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

ABSTRACT: The work aims to prove the effectiveness and accuracy of particle swarm optimization algorithm for parameter identification of steel-net pad vibration isolator and investigate the effects of different loading conditions on the mechanical properties of steel-net pad. The sinusoidal loading test was carried out on the steel-net pad to obtain the test response data. The mechanical properties of the steel-net pad were described by the bilinear constitutive model, and the parameter identification equation of the vibration isolator was established. The particle swarm optimization algorithm and the test response data were used to identify the model parameters, and the variation of the identification parameters under different loading conditions was studied. The hysteresis loop calculated by the identified parameters was in good agreement with the experimental results. By changing the excitation amplitude and frequency, the primary stiffness, tertiary stiffness, slip stiffness and equivalent damping of the steel-net pad all changed regularly, while by changing the static load of the steel mesh pad, the curve changed very little. The study proves the effectiveness and accuracy of the particle swarm optimization algorithm in identifying the parameters of steel-net pad vibration isolator. It represents a parameter identification method with significant engineering application value.

KEY WORDS: steel-netpad; bilinear constitutive model; particle swarm optimization; parameter identification; hysteresis loop; nonlinear mechanics

收稿日期: 2024-08-08; 修订日期: 2024-08-28

Received: 2024-08-08; Revised: 2024-08-28

引文格式:王威,王轲,万竞择.基于粒子群算法的钢丝网垫隔振器参数识别[J].装备环境工程,2024,21(9):93-99.

WANG Wei, WANG Ke, WAN Jingze.Parameter Identification of Steel-net Pad Vibration Isolator Based on Particle Swarm Optimization Algorithms[J]. Equipment Environmental Engineering, 2024, 21(9): 93-99. 钢丝网垫隔振器属于非线性隔振装置,它的干摩 擦迟滞阻尼特性,使钢丝网垫隔振器可以在较宽的频 带内起到隔振的效果^[1-4]。研究表明,非线性隔振系 统(如钢丝网隔振器、钢丝绳隔振器、金属橡胶隔振 器等)在承受外部载荷时,金属丝之间会产生摩擦力, 表现出阻尼耗能的特点,可以很好地抑制低频振动^[5]。 因此,这种钢丝网垫隔振器被广泛研究并应用于各种 振动控制领域中。如 Ma 等^[6-7]研究了金属橡胶在转子 动力学系统和高温环境下的振动控制的有效性。Oh 等^[8]通过将卫星低温冷却器安装在隔振器上,发现可 以很容易地隔绝微振动,验证了该隔振器在发射环境 下的有效性。Kwon 等^[9]通过在齿轮上安装金属网垫 圈,解决了微抖动问题,提高了卫星图像质量。

钢丝网垫隔振器的非线性力学性能主要体现在 刚度和阻尼上,几何非线性、物理非线性、状态非线 性三大非线性均在钢丝网垫上得到体现。由于阻尼的 影响,钢丝网垫隔振器在正弦加载试验中,加载和卸 载曲线不重合而形成封闭迟滞回线,使隔振器呈现出 明显的迟滞特性[10-11]。有关研究学者分析了金属橡胶 的力学特性[12-14],并建立了各种建模方法。周艳国等[15] 推导了迹法模型和有记忆型模型, 深入理解了各模型 在金属橡胶材料中的减振机制,并使用上述数学模型 对金属橡胶元件进行了参数识别。曹凤利等[16]根据金 属橡胶的细观结构特征,提出基于变长度曲梁的结构 单元,建立了金属橡胶迟滞本构模型和金属丝基本结 构参数的力学模型,并通过对不同加工工艺的金属橡 胶进行试验,验证了该模型的有效性。祝维文等[17] 基于双折线模型,用等效线性化方法建立了隔振器的 数学模型。薛新等^[18]针对金属橡胶材料,将力-位移 迟滞回线分解为非线性单值曲线和椭圆,建立了一种 新的力学模型,并利用等效阻尼模型进行了参数识 别,然后针对不同相对密度的金属橡胶试件进行了多 次试验,验证了该力学模型的有效性。

针对模型参数的识别问题,常用的是最小二乘法,Zhang等^[19]提出了一种采用包含非线性弹性刚度、非线性黏性阻尼和双线性滞后库仑阻尼的半本构动力学模型,将双线性滞后阻尼表示为第一类切比雪夫多项式来近似,以正交的最小二乘法(OLS)确定

最佳的模型项数,进而对参数进行识别。但是用最小 二乘法对钢丝网垫隔振器进行参数识别,不仅需要确 保系统进入滑移,且滑移段较长。另外,该方法是建 立在实测信号信噪比很高的基础上的,而工程实际 中,测试信号难以避免噪声污染。杨坤鹏等^[20]基于等 效阻尼理论表达金属橡胶的阻尼力和恢复力,用傅里 叶级数展开式近似表示,然后用遗传算法对参数进行 了辨识,并总结了不同加载条件下参数的变化规律。 肖坤等[21]探讨了高温环境下金属橡胶材料的非线性 性能和力学特性的影响参数,用精确分解法对金属橡 胶的非线性本构关系进行了建模,用最小二乘法对模 型进行了参数识别,并通过高温激励试验验证了模型 的准确性。李玉龙等[12]对金属橡胶非线性隔振器进行 了静态和动态试验,分析了金属橡胶隔振器的力学特 性,利用粒子群优化算法对不同激励条件下的隔振器 模型参数进行了识别,通过施加不同激励条件,得到 了模型参数的变化规律。刘涛等[22]运用遗传算法对 Bouc-Wen 模型进行了参数识别。

本文对实验室的钢丝网垫隔振器进行正弦加载 试验并进行数据分析,观察了隔振器迟滞回线的变化 规律,利用双折线模型对钢丝网垫隔振器进行动力学 建模,采用粒子群算法对参数进行识别,并对比了试 验迟滞回线和识别迟滞回线。

1 钢丝网垫隔振器的动力学特性

1.1 结构及原理

钢丝网垫隔振器的具体结构组成以及工作原理 和钢丝网垫元件如图 1 所示,金属丝是钢丝网垫的最 基本单元。根据有关资料和试验对比,用圆截面的 Ni-Cr 合金钢丝网进行缠绕轧制,产品的性能比较理 想^[23]。这种金属丝的牌号为 1Cr18Ni9Ti,是一种普通 的不锈钢材料。这种金属丝的直径为 0.2 mm,弹性模 量为 193 GPa,密度为 8.03 g/cm³。钢丝网垫元件的 详细参数如表 1 所示。由于 Ni-Cr 合金具有较大的弹性 模量和强度,用这种材料制成的钢丝网垫在施加载荷后 残余变形比较小,所以适合用于钢丝网垫元件的制备。

Tab.1 Steel-net pad component parameters					
广义密度 ρ/(g·cm ⁻³)	质量 <i>m/</i> g	体积 V/cm ³	高度 <i>h</i> /cm		
2.0	9.04	4.52	1.0		

1.2 力学特性试验

表 1

为分析不同加载参数对钢丝网垫元件的影响,首 先需要对隔振器进行不同激励条件下的正弦加载参 数识别试验,以便识别出模型参数,并建立准确的模 型。二自由度上的减振器参数识别试验夹具安装及试 验装置如图 2a 所示,试验现场如图 2b 所示。正弦加

的状态对隔振器力学性能的影响较小。

将试验得到的8组不同工况下的激振力曲线、位移曲线数据进行处理后,得到的不同工况下的力-位移迟滞回线对比曲线如图3~5所示。从试验结果可以看出,由于钢丝网垫的变刚度特性,加载曲线和卸载

曲线不一致。正弦加载试验中,激振力的频率和幅值

发生改变,力-位移迟滞回线都有明显的变化,而改

变钢丝网垫所受静载,曲线变化极为微小。加载参数

会影响钢丝网垫隔振器的力学性能,其中激振力的频

率和幅值对隔振器力学性能的影响较大,而长期压缩

b 试验现场

图 3 不同载荷幅值的迟滞回线 Fig.3 Hysteresis loops at different load amplitudes: a) axial; b) radial

表 2	参数识别试验的不同工况	
Tab.2 Different c	onditions of parameter identification te	st

		1		
工况	加载方向	幅值/N	频率/Hz	静载/kg
1		30	50	1.03
2	劫占	30	100	1.03
3	粗円	20	50	1.03
4		30	50	1.89
5		30	50	1.08
6	径向	30	50	2.16
7		20	50	2.16
8		30	100	2.16

2 钢丝网垫隔振器参数识别

2.1 双折线模型

为了描述隔振器的非线性力学性能,有许多恢复 力数学模型被提出来,如 Hartog 干摩擦阻尼力学模 型、Iwan 双折线模型、Bouc-Wen 模型、复刚度模型 等^[24]。其中双折线模型的形式比较简单,各参数的物 理意义比较明确,易于理解,待识别的参数也相对较 少,且能较为准确地描述钢丝网垫的力-位移关系, 本文选择双折线模型来分析钢丝网垫的力学性能。

图 4 不同激励频率的迟滞回线

Fig.4 Hysteresis loops at different excitation frequencies: a) axial; b) radial

钢丝网垫隔振器的非线性动力学微分方程:

 $m\ddot{x} + g_{\rm N} \left[x_0 + x(t), \dot{x}(t), t \right] = F(t) + mg$ (1)

恢复力 g_N可以分解为 2 个部分: 仅与当前变形 状态有关的无记忆部分 g₀ 和与整个变形历史有关的 记忆部分 z(t)。其中, 仅考虑位移三次非线性因素的 影响就足以描述无记忆恢复力 g₀的力学行为。

$$g_0 = k_1 y(t) + k_3 y^3(t) + c \dot{y}(t)$$
 (2)
双折线本构关系模型如图 6 示。

上述模型的待识别参数向量可写为 η ,即(k_1 , k_3 , c, z_s , y_s , k_s)。其中, k_1 为一次线性刚度系数; k_3 为三 次非线性刚度系数;c为等效黏弹性阻尼系数; z_s 为 滑移记忆恢复力; y_s 为滑移极限; k_s 为滑移刚度。

2.2 参数识别

对于上述非线性参数识别问题,多采用遗传算法 进行参数识别,但辨识过程比较复杂,且收敛速度比 较慢,需要进行反复的"交叉"和"变异"操作。本 文拟采用粒子群算法(PSO),优化识别出隔振器的 参数向量。该算法^[25]搜索速度快,效率高,算法简单, 适合于实值型处理,简单易实现,具有并行计算能力, 尤其适用全局搜索,避免优化落入局部最优。针对本 文所涉具体的问题,设置如下。

优化的目标函数定义为参数的辨识误差最小:

$$\min E = \sum \left(\hat{F}_k - F_k\right)^2 \tag{3}$$

式中: \hat{F} 是识别力序列估计,由试验测取的系统 位移响应、速度响应、加速度响应序列及优化的参数 向量 $\hat{\eta}_i$ 代计算获得; F_k 为试验所得激励序列。样本信 号 F_k 、 x_k 、 x_k 利用正弦加载试验测得的数据得到。

粒子数为一个激励周期的采样点数。粒子参数采 用实数编码,粒子运动最大速度为 v_{max} 为1000,最 小速度 v_{min} 为-1000;精度 ε 为10⁻³;学习因子 c_1 、 c_2 均为2;采用线性递减的惯性权重,惯性权重从0.9 线性递减到0.1。限于篇幅,仅列出工况3和工况8 的进化曲线,最大迭代步数为20。参数识别结果如 表3所示。

图 7 辨识误差函数的优化过程

Fig.7 Optimization process of identification error function: a) working condition 3; b) working condition 8

表 3 不同工况下钢丝网垫参数识别结果 Tab.3 Parameter identification results of steel-net pad under different working conditions

加载参数	k_1	k_3	С	$Z_{\rm S}$	${\cal Y}_{\rm S}$	ks
30 N, 50 Hz, 1.03 kg	3.74×10^{6}	-3.66×10^{15}	1.17×10^{4}	46.79	2.4×10^{-5}	1.95×10^{6}
30 N, 100 Hz, 1.03 kg	1.64×10^{6}	-1.92×10^{15}	4.63×10^{3}	11	2.21×10^{-5}	4.98×10^{5}
20 N, 50 Hz, 1.03 kg	6.73×10^{5}	1.03×10^{15}	1.67×10^{4}	20.88	2.26×10^{-5}	9.24×10 ⁵
30 N, 50 Hz, 1.89 kg	3.48×10^{6}	-3.73×10^{15}	1×10^{4}	46.3	2.33×10^{-5}	1.98×10^{6}
30 N, 50 Hz, 1.08 kg	9.91×10^{6}	-6.72×10^{15}	1.8×10^{4}	16.08	1.72×10^{-5}	9.35×10 ⁵
30 N, 50 Hz, 2.16 kg	9.69×10 ⁶	-6.61×10^{15}	1.7×10^{4}	16.22	1.72×10^{-5}	9.43×10 ⁵
20 N, 50 Hz, 2.16 kg	3.63×10 ⁵	-8.5×10^{15}	2.4×10^{4}	9.47	1.6×10^{-5}	6.1×10 ⁵
30 N, 100 Hz, 2.16 kg	5.15×10 ⁵	-3.59×10^{14}	3.09×10^{3}	7	1.58×10^{-5}	4.43×10 ⁵

3 识别结果分析

根据识别出的参数和激励序列可以计算并绘制 识别迟滞回线。限于篇幅,本文从表 3 选取 2 组工况 进行识别参数和试验测试的迟滞回线对比分析。工况 3 加载参数:轴向加载,载荷幅值为 20 N,激励频率 为 50 Hz,悬挂静载为 1.03 kg;工况 8 加载参数:径 向加载,载荷幅值为 30 N,激励频率为 100 Hz,悬 挂静载为 2.16 kg。结果如图 8 所示。

通过对参数识别后模型计算与试验所得的响应

结果对比可知:

1)用识别出的参数代入回双折线数学模型,绘制的力-位移迟滞回线和试验测试得到的力-位移迟滞 回线吻合度良好,证明了用双折线模型描述钢丝网垫 隔振器的力学性能并用基于粒子群算法的参数识别 方法可行。

2)随着激励振幅的增大(20~30 N),钢丝网垫 隔振器的一次刚度 k₁增加,滑移刚度 k_s、等效阻尼 c 逐渐减小。

3)随着激励频率的增大(50~100 Hz),钢丝网

图 8 识别迟滞回线和试验迟滞回线对比

Fig.8 Comparison of the identification hysteresis loop and the test hysteresis loop: a) working condition 3; b) working condition 8

垫隔振器的一次刚度 k₁、滑移刚度 k_s、等效阻尼 c 逐 渐减小,三次刚度 k₃逐渐增加。

4)悬挂静载质量大小对隔振器参数变化的影响 很小。

4 结论

针对钢丝网垫隔振器,选择双折线模型对隔振器 力学特性进行描述,提出基于粒子群算法的钢丝网垫 隔振器参数识别,并对识别结果进行验证,得到以下 结论:

和新线模型能够较好地表达出钢丝网垫隔振器的动力学性能。运用粒子群算法识别出的双折线模型的精度较高,证明了粒子群算法的准确性和有效性。

2)不同的加载条件对钢丝网垫元件力学性能的 影响不同,加载条件(尤其是激励幅值和频率)的改 变会导致隔振器力-位移关系的改变,而长期压缩的 状态对隔振器力学性能的影响较小。

参考文献:

- 朱彬,马艳红,洪杰. 金属橡胶刚度阻尼模型理论分析
 [J]. 北京航空航天大学学报, 2011, 37(10): 1298-1302.
 ZHUB, MA Y H, HONG J. Theoretical Analysis on Stiffness and Damping Characteristics of Metal Rubber[J].
 Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(10): 1298-1302.
- [2] 李拓, 白鸿柏, 路纯红, 等. 金属橡胶的研究进展及其应用[J]. 新技术新工艺, 2013(3): 85-90.
 LI T, BAI HB, LU C H, et al. Research and Application in Development of Metal Rubber[J]. New Technology & New Process, 2013(3): 85-90.
- [3] 白鸿柏,路纯红,曹凤利,等.金属橡胶材料及工程应用[M].北京:科学出版社,2014.
 BAI H B, LU C H, CAO F L, et al. Metal Rubber Material and ItsEngineeringApplication[M]. Beijing: Science Press, 2014.
- [4] TANG N, RONGONG J A. Feasibility Study on the Use of Tangled Metal Wire Particles as the Adjustable Elements in Tuned Mass Dampers[J]. Journal of Sound and Vibration, 2019, 457: 1-14.
- [5] 李玉龙, 白鸿柏, 何忠波. 柔性基础上金属橡胶隔振系 统混沌响应研究[J]. 振动与冲击, 2015, 34(14): 100-105.

LI Y L, BAI H B, HE Z B. Chaotic Response of Metal Rubber Vibration Isolation Systemon Flexible Foundation[J]. Journal of Vibration and Shock, 2015, 34(14): 100-105.

[6] MA Y H, ZHANG Q C, ZHANG D Y, et al. A Novel Smart Rotor Support with Shape Memory Alloy Metal Rubber for High Temperatures and Variable Amplitude Vibrations[J]. Smart Materials and Structures, 2014, 23(12): 125016.

- [7] MA Y H, ZHANG Q C, ZHANG D Y, et al. Tuning the Vibration of a Rotor with Shape Memory Alloy Metal Rubber Supports[J]. Journal of Sound and Vibration, 2015, 351: 1-16.
- [8] OH H U, KWON S C, YOUN S H. Characteristics of Spaceborne Cooler Passive Vibration Isolator by Using a Compressed Shape Memory Alloy Mesh Washer[J]. Smart Material Structures, 2015, 24(1): 015009.
- [9] KWON S C, JEON S H, OH H U. Performance Investigation of a Novel Pseudoelastic SMA Mesh Washer Gear Wheel with Micro-Jitter Attenuation Capability[J]. Smart Material Structures, 2016, 25(5): 055004.
- [10] 卢成壮,李静媛,周邦阳,等.金属橡胶的刚度特性和 阻尼试验研究[J]. 振动与冲击,2017,36(8):203-208. LUCZ,LIJY,ZHOUBY, et al. An Experimental Study on Stiffness Characteristics and Damping of Metal Rubber[J]. Journal of Vibration and Shock, 2017, 36(8): 203-208.
- [11] 李玉龙, 白鸿柏, 何忠波, 等. 金属橡胶非线性隔振器 试验研究与参数分析[J]. 噪声与振动控制, 2015, 35(2): 194-200.
 LI Y L, BAI H B, HE Z B, et al. Experimental Study and Parameter Analysis of Nonlinear Metal-Rubber Isolators[I] Noise and Vibration Control 2015 35(2): 194-

tors[J]. Noise and Vibration Control, 2015, 35(2): 194-200. [12] 朱彬, 马艳红, 张大义, 等. 金属橡胶迟滞特性本构模

- 型研究[J]. 物理学报, 2012, 61(7): 474-481. ZHU B, MA Y H, ZHANG D Y, et al. A Constitutive Model of Metal Rubber Based on Hysteresis Property[J]. ActaPhysicaSinica, 2012, 61(7): 474-481.
- [13] 邹龙庆,曹义威,付海龙,等.金属橡胶材料迟滞特性 力学模型研究[J].噪声与振动控制,2019,39(6):1-5. ZOU L Q, CAO Y W, FU H L, et al. Study on the Mechanical Model for Hysteresis Characteristics Analysis of Metal Rubber Materials[J]. Noise and Vibration Control, 2019, 39(6): 1-5.
- [14] 曹凤利, 白鸿柏, 任国全, 等. 金属橡胶恢复力的迟滞 模型研究[J]. 中国机械工程, 2014, 25(3): 311-314.
 CAO F L, BAI H B, REN G Q, et al. Research on Hysteresis Model of Restoring Force of Metal Rubber[J].
 China Mechanical Engineering, 2014, 25(3): 311-314.
- [15] 周艳国,屈文忠.金属橡胶非线性动力学特性建模方法研究[J].噪声与振动控制,2013,33(1):31-36.
 ZHOU Y G, QU W Z. Several Practical Approaches for Nonlinear Dynamic Modeling of MetalRubber[J]. Noise and Vibration Control, 2013, 33(1): 31-36.
- [16] 曹凤利, 白鸿柏, 李冬伟, 等. 基于细观力学方法的金属橡胶迟滞特性本构模型[J]. 稀有金属材料与工程, 2016, 45(1): 1-6.
 CAO F L, BAI H B, LI D W, et al. A Constitutive Model of Metal Rubber for Hysteresis Characteristics Based on a Meso-Mechanical Method[J]. Rare Metal Materials and Engineering, 2016, 45(1): 1-6.

- [17] 祝维文,刘星星,任志英,等.非成型向金属橡胶减振器的减振性能[J]. 福州大学学报(自然科学版), 2020, 48(6): 747-754.
 ZHU W W, LIU X X, REN Z Y, et al. Vibration Damping Performance of the Non Forming Metal Rubber Damper[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(6): 747-754.
- [18] 薛新, 阮仕鑫, 白鸿柏. 基于等效阻尼理论的金属橡胶 弹性迟滞力学模型及实验研究[J]. 实验力学, 2021, 36(1): 80-90.
 XUE X, RUAN S X, BAI H B. Elasto-HysteresisModel and Experimental Study of Metal Rubber Based on Equivalent Damping Theory[J]. Journal of Experimental Mechanics, 2021, 36(1): 80-90.
- [19] ZHANG B, LANGZ Q, BILLINGS S A, et al. System Identification Methods for Metal Rubber Devices[J]. Mechanical Systems and Signal Processing, 2013, 39 (1/2): 207-226.
- [20] 杨坤鹏, 樊文欣, 曹存存, 等. 金属橡胶材料的动态力 学建模及参数辨识[J]. 机械科学与技术, 2017, 36(12): 1830-1833.
 YANG K P, FAN W X, CAO C C, et al. Dynamic Mechanical Modeling and Parameter Identification of Metal-Rubber Materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(12): 1830-1833.
- [21] 肖坤, 白鸿柏, 薛新, 等. 高温管路包覆金属橡胶耗能 特性及参数识别[J]. 兵器材料科学与工程, 2019, 42(1):

11-17.

XIAO K, BAI H B, XUE X, et al. Energy Dissipation Characteristics and Parameter Identification of Metal Rubber Coated Pipe in High Temperature Environment[J]. Ordnance Material Science and Engineering, 2019, 42(1): 11-17.

[22] 刘涛, 黄学功, 马伟佳. 基于遗传算法的 MRE 隔振器 动力学模型识别[J]. 噪声与振动控制, 2021, 41(5): 50-57.

LIU T, HUANG X G, MA WJ. Dynamic Model Identification of MRE Vibration Isolators Based on Genetic Algorithm[J]. Noise and Vibration Control, 2021, 41(5): 50-57.

- [23] 朱芹, 樊文欣, 张保成, 等. 金属丝网减振器的建模与 参数识别[J]. 科学技术与工程, 2017, 17(28): 47-51. ZHU Q, FAN W X, ZHANG B C, et al. Mechanical Modeling and Parameter Identification of the Metal-Net Vibration Absorber[J]. Science Technology and Engineering, 2017, 17(28): 47-51.
- [24] 王轲,孙晓峰,于锋礼. 钢丝网垫减振器的三维建模
 [J]. 振动测试与诊断, 2012, 32(6): 931-934.
 WANG K, SUN X F, YU F L. 3D Modeling of Steel-Net Pad Damper[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(6): 931-934.
- [25] 杨维,李歧强. 粒子群优化算法综述[J]. 中国工程科 学, 2004, 6(5): 87-94.
 YANG W, LI Q Q. Survey on Particle Swarm Optimization Algorithm[J]. EngineeringScience, 2004, 6(5): 87-94.