戴建伟,何利民,申造宇,刘冠熙,甄真,许振华,牟仁德.化学气相渗透法制备碳化硅界面涂层的沉积动力学研究[J].装备环境工程,2021,18(6):22-29. DAI Jian-wei,HE Li-min,SHEN Zao-yu,LIU Guan-xi,ZHEN Zhen,XU Zhen-hua,MU Ren-de.Deposition Kinetics of SiC Interfacial Coatings Prepared by Chemical Vapor Infiltration[J].Equipment Environmental Engineering,2021,18(6):22-29.
化学气相渗透法制备碳化硅界面涂层的沉积动力学研究
Deposition Kinetics of SiC Interfacial Coatings Prepared by Chemical Vapor Infiltration
投稿时间:2021-01-12  修订日期:2021-04-14
DOI:10.7643/issn.1672-9242.2021.06.004
中文关键词:  化学气相渗透  SiC界面涂层  热力学计算  沉积温度  沉积动力学中图分类号:TB332 文献标识码:A 文章编号:1672-9242(2021)06-0022-08
英文关键词:chemical vapor infiltration  SiC interfacial coatings  thermodynamic calculation  deposition temperature  deposition kinetics
基金项目:自主创新专项基金(JK65190536)
作者单位
戴建伟 北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京100095 
何利民 北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京100095 
申造宇 北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京100095 
刘冠熙 北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京100095 
甄真 北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京100095 
许振华 北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京100095 
牟仁德 北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京100095 
AuthorInstitution
DAI Jian-wei Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing Institute of Aeronautical Materials, Beijing 100095, China 
HE Li-min Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing Institute of Aeronautical Materials, Beijing 100095, China 
SHEN Zao-yu Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing Institute of Aeronautical Materials, Beijing 100095, China 
LIU Guan-xi Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing Institute of Aeronautical Materials, Beijing 100095, China 
ZHEN Zhen Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing Institute of Aeronautical Materials, Beijing 100095, China 
XU Zhen-hua Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing Institute of Aeronautical Materials, Beijing 100095, China 
MU Ren-de Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing Institute of Aeronautical Materials, Beijing 100095, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究沉积温度对SiC界面涂层微观形貌、结构和成分的影响,探讨SiC界面涂层的沉积动力学和沉积机理。方法 采用Factsage软件计算MTS-H2反应物体系热力学平衡后产物组成,采用化学气相渗透法(CVI)在碳化硅纤维上制备SiC界面涂层,采用SEM、TEM、XRD等分析测试技术对SiC涂层形貌、结构和成分进行分析。结果 在860~1060 ℃温度范围内,MTS-H2体系平衡后的主要产物有SiC、C等,并在该温度范围采用CVI工艺制备出了SiC界面涂层。结论 在860~1060 ℃温度范围内,提高沉积温度有利于增加SiC的产率。温度低于960 ℃时,制备的SiC界面涂层表面光滑;高于1060 ℃时,得到了表面具有团簇结构的涂层,并且随着沉积温度的升高,涂层的结晶度提高。沉积动力学计算结果表明,温度低于1060 ℃时,SiC的沉积过程受表面反应控制;温度高于1060 ℃时,沉积过程受扩散控制。采用CVI工艺制备出了单一立方相的SiC界面涂层,并且(111)晶面为SiC颗粒的优先生长晶面。
英文摘要:
      This paper aims to study the influence of deposition temperature on the morphology, structure and composition of SiC interfacial coatings and to discuss the deposition kinetics and mechanism of it. Factsage software was used to calculate the product composition of MTS-H2 system after thermodynamic equilibrium. SiC interfacial coatings were prepared on SiC fibers by chemical vapor infiltration (CVI). The morphology, structure and composition of the coatings were analyzed by SEM, TEM and XRD. The main products were SiC and C of MTS-H2 system after thermodynamic equilibrium in the temperature range of 860~1060 ℃. In this temperature range, SiC interfacial coatings were prepared by CVI. In the temperature range of 860~ 1060 ℃, the increase of deposition temperature can improve the yield of SiC. When the temperature is lower than 960 ℃, the surface of SiC interfacial coating is smooth; when the temperature is higher than 1060 ℃, clusters appear on the surface of the coatings. With the increase of deposition temperature, the crystallinity of the coating increases. The deposition kinetics results showed that the deposition process of SiC coatings was controlled by surface reaction when the temperature was lower than 1060 ℃ and controlled by diffusion when it was higher than 1060 ℃. The SiC interfacial coatings with single cubic phase were prepared by CVI and (111) crystal plane was the preferred growth crystal plane of SiC particles.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第11513539位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号