汤天宝,罗义建,秦玉林,彭国民,余春祥,胡军峰.差速器壳体疲劳寿命仿真分析方法[J].装备环境工程,2021,18(11):137-142. TANG Tian-bao,LUO Yi-jian,QIN Yu-lin,PENG Guo-min,YU Chun-xiang,HU Jun-feng.Simulation Analysis Method of Fatigue Life for Differential Housing[J].Equipment Environmental Engineering,2021,18(11):137-142.
差速器壳体疲劳寿命仿真分析方法
Simulation Analysis Method of Fatigue Life for Differential Housing
投稿时间:2021-04-01  修订日期:2021-05-26
DOI:10.7643/issn.1672-9242.2021.11.019
中文关键词:  差速器  弹性支撑  有限元模型  疲劳寿命中图分类号:TB47 文献标识码:A 文章编号:1672-9242(2021)11-0137-06
英文关键词:differential  plastic bracing  FEA  fatigue life
基金项目:
作者单位
汤天宝 浙江吉利动力总成研究院 动力总成试验中心,浙江 宁波 315000 
罗义建 浙江吉利动力总成研究院 动力总成试验中心,浙江 宁波 315000 
秦玉林 浙江吉利动力总成研究院 动力总成试验中心,浙江 宁波 315000 
彭国民 浙江吉利动力总成研究院 动力总成试验中心,浙江 宁波 315000 
余春祥 浙江吉利动力总成研究院 动力总成试验中心,浙江 宁波 315000 
胡军峰 浙江吉利动力总成研究院 动力总成试验中心,浙江 宁波 315000 
AuthorInstitution
TANG Tian-bao Zhejiang Geely Powertrain Research Institute, Powertrain Test Center, Ningbo 315000, China 
LUO Yi-jian Zhejiang Geely Powertrain Research Institute, Powertrain Test Center, Ningbo 315000, China 
QIN Yu-lin Zhejiang Geely Powertrain Research Institute, Powertrain Test Center, Ningbo 315000, China 
PENG Guo-min Zhejiang Geely Powertrain Research Institute, Powertrain Test Center, Ningbo 315000, China 
YU Chun-xiang Zhejiang Geely Powertrain Research Institute, Powertrain Test Center, Ningbo 315000, China 
HU Jun-feng Zhejiang Geely Powertrain Research Institute, Powertrain Test Center, Ningbo 315000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究差速器壳体疲劳寿命分析方法,调查差速器壳体断裂的根本原因。方法 以具体试验工况为输入,以减速器壳体支撑刚度为边界条件,以齿轮啮合力为输入载荷,建立弹性支撑条件下的差速器壳体有限元模型,并进行强度计算。以强度分析结果为输入,在疲劳寿命计算软件FEMFAT中进行疲劳寿命校核。考虑到差速器壳体分析工况较多、载荷复杂,采用Neuber公式,结合材料的循环应力-应变曲线方程和应力-应变迟滞回线方程,进行线弹性应力修正的方法进行校核。同时,为了更好地模拟差速器的运行极限工况,分析载荷采用了三正一负交替变化的载荷。最后,基于线性疲劳累积损伤理论的Miner法则对结果进行判断。结果 基于线性疲劳累积损伤理论的Miner法则,初始设计方案的计算结果表明,疲劳破坏发生在壳体过渡圆角处,其可承受的载荷循环次数为270次,不满足大于350次的设计目标,结果与疲劳台架试验相符,且失效区域对应性较好。通过增大差速器壳体过渡圆角半径及增加壳体厚度的方法对差速器壳体进行优化,优化后的疲劳分析结果显示,疲劳寿命增加至417次,满足350次设计目标,并顺利通过耐久台架试验。结论 通过优化前后台架试验结果与仿真结果的对比证实,该仿真分析方法能准确预测差速器壳体的疲劳水平,且该分析方法在计算精度方面是完全可信的,可以在实际项目开发中应用,可提前识别并规避风险,减少后期台架验证成本。
英文摘要:
      This paper is to study the fatigue life analysis method of differential housing and investigate the root cause of differential housing failure. Taking the specific testing load case as the input, support stiffness of decelerator housing as boundary condition, gear meshing force as the input load, the finite element model of the differential housing under the condition of elastic support is established, and the strength is calculated. The strength result is then input to fatigue SW FEMFAT to verify fatigue life. Considering that the analyzed conditions and loads of differential housing are complicated, Neuber formula is used to check the linear elastic stress correction method in combination with the material cyclic stress-strain curve and stress-strain hysteresis equation. At the same time, in order to better simulate the operating limit load of the differential, the load analysis adopts the alternating load of three positive and one negative. Finally, the result is judged based on the linear fatigue damage accumulated theory, Miner principle. According to the linear fatigue damage accumulated theory, Miner principle, the calculation results of the initial design scheme show that the fatigue failure occurs at the transition fillet of the housing, and the number of load cycles it can sustain is 270, which does not meet the design criterion of more than 350 times. The results are coincident with fatigue bench test and the correspondence of the failure area is good.. The differential housing is optimized by increasing the transition fillet radius of the differential housing and increasing the thickness of the housing. The optimized fatigue analysis results show that the fatigue life is increased to 417 times, which meets the design criterion of 350 times, and successfully passes the durability bench test. With comparison of simulation results and bench testing result before and after optimization, it is confirmed that this simulation analysis method can accurately predict the fatigue level of the differential housing and the analysis method is completely reliable in terms of calculation accuracy. It can be applied in the actual project development, identify and avoid risks in advance, and reduce the bench verification cost in the later stage.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第11514047位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号