段捷,陈禧龙,杨宏杰,赵河明,赵韬硕,丁明军,孔德景,于静.基于RBF神经网络的油气悬架平顺性研究[J].装备环境工程,2024,21(3):113-120. DUAN Jie,CHEN Xilong,YANG Hongjie,ZHAO Heming,ZHAO Taoshuo,DING Mingjun,KONG Dejing,YU Jing.Ride Comfort of Hydro-pneumatic Suspension Based on RBF Neural Network[J].Equipment Environmental Engineering,2024,21(3):113-120.
基于RBF神经网络的油气悬架平顺性研究
Ride Comfort of Hydro-pneumatic Suspension Based on RBF Neural Network
投稿时间:2024-01-26  修订日期:2024-02-26
DOI:10.7643/issn.1672-9242.2024.03.015
中文关键词:  油气弹簧  自主调节  动态整定  RBF-PID控制器  快速稳定  可靠控制中图分类号:U463.3 文献标志码:A 文章编号:1672-9242(2024)03-0113-08
英文关键词:hydro-pneumatic spring  autonomic conditioning  dynamically adjusted  RBF-PID controller  reach stable state quickly  reliable control
基金项目:国防科工局技术基础项目(JSZL2020208B002)
作者单位
段捷 中北大学 机电工程学院,太原 030051 
陈禧龙 中北大学 机电工程学院,太原 030051 
杨宏杰 中北大学 机电工程学院,太原 030051 
赵河明 中北大学 机电工程学院,太原 030051 
赵韬硕 中国北方车辆研究所,北京 100072 
丁明军 淮海工业集团有限公司,山西 长治 046012 
孔德景 中国船舶集团有限公司第七一四研究所,北京 100101 
于静 中国船舶集团有限公司第七一四研究所,北京 100101 
AuthorInstitution
DUAN Jie College of Mechatronic Engineering, North University of China, Taiyuan 030051, China 
CHEN Xilong College of Mechatronic Engineering, North University of China, Taiyuan 030051, China 
YANG Hongjie College of Mechatronic Engineering, North University of China, Taiyuan 030051, China 
ZHAO Heming College of Mechatronic Engineering, North University of China, Taiyuan 030051, China 
ZHAO Taoshuo China North Vehicle Research Institute, Beijing 100072, China 
DING Mingjun Huaihai Industries Group Co., Ltd., Shanxi Changzhi 046012, China 
KONG Dejing Shipbuilding Information Centre of China, Beijing 100101, China 
YU Jing Shipbuilding Information Centre of China, Beijing 100101, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高整车的行驶性能,使车辆可以自主调节,以适应各种不同的路面,从而达到良好的缓冲效果。方法 以双气室油气弹簧为研究对象,对其组成和工作原理进行详细分析,推导出油气弹簧的阻尼力和刚度等非线性特性与车身位移的关系。根据RBF神经网络控制原理,设计RBF-PID控制器,依靠神经网络自学习性对PID参数动态整定,使整个车身振动衰减,快速达到稳定状态,并基于Matlab/Simulink平台建立仿真模型,在B级和C级不平路面输入的情况下,重点对轮胎动载荷、车身质心加速度以及油气悬挂动挠度等3项性能进行仿真和分析。结果 同普通PID控制相比,RBF-PID控制下,车身3项性能的RMS分别降低26%、54%、0.1%。结论 RBF-PID控制能够克服环境影响,实现油气弹簧特性的可靠控制,提高了车辆行驶的平顺性以及稳定性。
英文摘要:
      The work aims to improve the driving performance of the whole vehicle so that the vehicle can autonomic conditioning to adapt to a variety of different road surfaces to achieve a good buffer effect. The composition and working principle and relationship between the damping force and stiffness of hydro-pneumatic spring and the displacement of vehicle body was deduced in detail. According to the principle of RBF neural network control, a RBF-PID controller was designed, and the PID parameters were dynamically adjusted by the self-learning habit of neural network, so that the vibration of the whole body attenuated and reached a stable state quickly. A simulation model was established based on Matlab/Simulink platform. With the input of Class B and Class C uneven road surface, the three performances of tire dynamic load, body centroids acceleration and dynamic deflection of oil-gas suspension were simulated and analyzed. Compared with the ordinary PID control, the RMSE of three performance of the body under RBF-PID control was reduced by 26%, 54% and 0.3% respectively. RBF-PID control can overcome the impact of the environment, realize the reliable control of the characteristics of the oil-gas spring, and improve the ride comfort and stability of the vehicle.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第15786565位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号