齐阳,祝华远,吴士博.基于VMD-LSTM的航空发动机剩余寿命预测方法[J].装备环境工程,2025,22(5):92-102. QI Yang,ZHU Huayuan,WU Shibo.Residual Useful Life Prediction Method of Aero Engine Based on VMD-LSTM[J].Equipment Environmental Engineering,2025,22(5):92-102.
基于VMD-LSTM的航空发动机剩余寿命预测方法
Residual Useful Life Prediction Method of Aero Engine Based on VMD-LSTM
投稿时间:2025-03-14  修订日期:2025-03-25
DOI:10.7643/issn.1672-9242.2025.05.013
中文关键词:  变分模态分解  航空发动机  剩余寿命  预测  长短期记忆网络  性能退化中图分类号:TP18 文献标志码:A 文章编号:1672-9242(2025)05-0092-11
英文关键词:variational mode decomposition  aero engine  residual life  prediction  long short-term memory network  performance degradation
基金项目:
作者单位
齐阳 海军航空大学青岛校区,山东 青岛 266041 
祝华远 海军航空大学青岛校区,山东 青岛 266041 
吴士博 海军航空大学青岛校区,山东 青岛 266041 
AuthorInstitution
QI Yang Naval Aviation University Qingdao Campus, Shandong Qingdao 266041, China 
ZHU Huayuan Naval Aviation University Qingdao Campus, Shandong Qingdao 266041, China 
WU Shibo Naval Aviation University Qingdao Campus, Shandong Qingdao 266041, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 解决传统航空发动机剩余寿命预测方法精度较低的问题。方法 将变分模态分解(Variational Mode Decomposition,VMD)与长短期记忆网络(Long Short-Term Memory,LSTM)进行深度融合,构建新型混合预测框架。通过信号分解与深度学习相结合的技术路径,提升飞参数据特征提取能力和航空发动机寿命预测的准确性。首先,对航空发动机数据集中的各参数进行VMD;然后将分解完毕的数据输入LSTM网络中,结合对应的剩余寿命标签进行训练;最后,通过参数对比和优化实现参数寻优,提高模型的性能表现。结果 相较于CNN、DCNN、RNN和GRU,VMD-LSTM模型在涡扇发动机RUL预测任务中取得了较高的预测精度,在提取时频域特征及捕捉长期依赖关系方面展现出强大能力。结论 VMD-LSTM模型提升了对复杂动态变化的捕捉能力,实现了对航空发动机RUL的高精度预测。
英文摘要:
      The work aims to solve the problem of low accuracy of existing aero engine residual life prediction methods. A new hybrid prediction framework was constructed by deep fusion of variational mode decomposition (VMD) and long short-term memory network (LSTM). Through the technical path combining signal decomposition and deep learning, the scheme effectively improved the extraction capability of engine degradation features and the accuracy of life prediction. Firstly, Variational Mode Decomposition (VMD) was performed for each parameter in aero engine data set. The decomposed data was input into the Long Short-Term Memory (LSTM) network and trained with the corresponding remaining life label. Finally, parameter optimization was realized through parameter comparison and optimization to improve the performance of the model. The experimental results of C-MAPSS showed that the VMD-LSTM model proposed in this paper achieved higher prediction accuracy in RUL prediction tasks of turbofan engines compared with CNN, DCNN, RNN and GRU, demonstrating the powerful capability of the VMD-LSTM model in extracting time-frequency domain features and capturing long-term dependency relationships. The VMD-LSTM model improves the ability to capture complex dynamic changes, and realizes high-precision prediction of aero engine RUL.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第16602217位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号