纳米氧化铝增强镍磷空心微点阵热传导性能研究

邵凯, 刘龙权

装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 26-36.

PDF(14702 KB)
PDF(14702 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 26-36. DOI: 10.7643/issn.1672-9242.2025.06.004
航空航天装备

纳米氧化铝增强镍磷空心微点阵热传导性能研究

  • 邵凯, 刘龙权*
作者信息 +

Thermal Conductivity of Nano-alumina Reinforced Ni-P Hollow Micro-lattice

  • SHAO Kai, LIU Longquan*
Author information +
文章历史 +

摘要

目的 针对应用于航天器隔热材料的镍磷空心微点阵,研究向镀层中加入纳米氧化铝颗粒共沉积对镀层导热性能的影响,以及提高其隔热性能的方法。方法 选用模板法和复合化学镀方法制备纳米氧化铝镍磷复合镀层和空心微点阵,采用SEM、EDS对复合镀层的微观组织形貌和表面元素分布进行研究,采用LFA、DSC对复合镀层进行测试,得到其热扩散系数、比热和导热系数。采用一维稳态传热试验和有限元方法得到空心微点阵的等效导热系数,研究镀层导热系数、管长、管径、壁厚以及单胞构型对空心微点阵热传导性能的影响。结果 镍磷镀层中加入纳米氧化铝颗粒后,增加了界面热阻和声子散射,隔热性能提升,导热系数随纳米氧化铝含量的增加而降低。空心微点阵等效导热系数随着镀层导热系数、管径和壁厚的减小而下降,随管长的增大而下降。单胞构型也会影响空心微点阵的孔隙率,进而影响其等效导热系数。结论 该研究为纳米氧化铝增强空心微点阵的隔热性能设计提供了参考。

Abstract

The work aims to study the effect of adding nano-alumina particles to the coating for co-deposition on the thermal conductivity of the coating in nickel-phosphorus hollow micro-lattices used in spacecraft thermal insulation materials, and study the ways to improve its thermal insulation performance. The template method and composite chemical plating method were used to prepare nano-alumina nickel-phosphorus composite coatings and hollow micro-lattices. The microstructure morphology and surface element distribution of the composite coating were studied by SEM and EDS. The thermal diffusion coefficient, specific heat and thermal conductivity of the composite coating were tested by LFA and DSC. The equivalent thermal conductivity of the hollow micro-lattice was obtained by one-dimensional steady-state heat transfer test and finite element method, and the effects of coating thermal conductivity, tube length, tube diameter, wall thickness and unit cell configuration on the thermal conduction performance of hollow micro-lattices were studied. The study showed that the addition of nano-alumina to the nickel-phosphorus coating increased the interfacial thermal resistance and phonon scattering, and improved the thermal insulation performance. The thermal conductivity decreased with the increase of nano-alumina content. The equivalent thermal conductivity of the hollow micro-lattice decreased with the decrease of the thermal conductivity of the coating, the tube diameter and the wall thickness, and decreased with the increase of the tube length. The unit cell configuration also affected the porosity of the hollow micro-lattice and thus affected its equivalent thermal conductivity. This study provides a reference for the design of thermal insulation performance of nano-alumina reinforced hollow micro-lattices.

关键词

纳米氧化铝 / 复合化学镀 / 微观组织 / 空心微点阵 / 导热系数

Key words

nano-alumina / composite electroless plating / microstructure / hollow micro-lattice / thermal conductivity

引用本文

导出引用
邵凯, 刘龙权. 纳米氧化铝增强镍磷空心微点阵热传导性能研究[J]. 装备环境工程. 2025, 22(6): 26-36 https://doi.org/10.7643/issn.1672-9242.2025.06.004
SHAO Kai, LIU Longquan. Thermal Conductivity of Nano-alumina Reinforced Ni-P Hollow Micro-lattice[J]. Equipment Environmental Engineering. 2025, 22(6): 26-36 https://doi.org/10.7643/issn.1672-9242.2025.06.004
中图分类号: V45   

参考文献

[1] ZHANG X S, CHEN Y J, HU J L.Recent Advances in the Development of Aerospace Materials[J]. Progress in Aerospace Sciences, 2018, 97: 22-34.
[2] BHAT B N, PANDEY A B, TAMIRISAKANDALA S, et al.Aerospace Materials Characteristics[R]. Commonwealth of Virginia: American Institute of Aeronautics and Astronautics, 2018.
[3] 董彦芝, 刘芃, 王国栋, 等. 航天器结构用材料应用现状与未来需求[J]. 航天器环境工程, 2010, 27(1): 41-44.
DONG Y Z, LIU P, WANG G D, et al.Application and Future Demand of Materials for Spacecraft Structures[J]. Spacecraft Environment Engineering, 2010, 27(1): 41-44.
[4] TACHIKAWA S, NAGANO H, OHNISHI A, et al.Advanced Passive Thermal Control Materials and Devices for Spacecraft: A Review[J]. International Journal of Thermophysics, 2022, 43(6): 91.
[5] CAO S Z, CHEN X K, WU G, et al. Micro Louvers for Micro and Nano-Satellites Thermal Control[J]. Advanced Materials Research, 2011, 317/318/319: 1658-1661.
[6] MERMER E, ÜNAL R.Passive Thermal Control Systems in Spacecrafts[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(3): 160.
[7] TORRENTS A, SCHAEDLER T A, JACOBSEN A J, et al.Characterization of Nickel-Based Microlattice Materials with Structural Hierarchy from the Nanometer to the Millimeter Scale[J]. Acta Materialia, 2012, 60(8): 3511-3523.
[8] SCHAEDLER T A, JACOBSEN A J, TORRENTS A, et al.Ultralight Metallic Microlattices[J]. Science, 2011, 334(6058): 962-965.
[9] FARZINAZAR S, SCHAEDLER T, VALDEVIT L, et al.Thermal Transport in Hollow Metallic Microlattices[J]. APL Materials, 2019, 7(10): 101108.
[10] JANG D, MEZA L R, GREER F, et al.Fabrication and Deformation of Three-Dimensional Hollow Ceramic Nanostructures[J]. Nature Materials, 2013, 12(10): 893-898.
[11] LEE S W, JAFARY-ZADEH M, CHEN D Z, et al.Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures[J]. Nano Letters, 2015, 15(9): 5673-5681.
[12] RYS J, VALDEVIT L, SCHAEDLER T A, et al.Fabrication and Deformation of Metallic Glass Micro-Lattices[J]. Advanced Engineering Materials, 2014, 16(7): 889-896.
[13] WAGH A, SINGH C P, RAMAMOORTHY S, et al.Effective Thermal Conductivity of Composite Strut-Based Hollow Periodic Cellular Solids[J]. Thermal Science and Engineering Progress, 2023, 43: 102003.
[14] WANG X H, ZENG T, XU G D, et al.Predicting the Equivalent Thermal Conductivity of Pyramidal Lattice Core Sandwich Structures Based on Monte Carlo Model[J]. International Journal of Thermal Sciences, 2021, 161: 106701.
[15] CHENG X M, WEI K, HE R J, et al.The Equivalent Thermal Conductivity of Lattice Core Sandwich Structure: A Predictive Model[J]. Applied Thermal Engineering, 2016, 93: 236-243.
[16] BALARAJU J N, SANKARA NARAYANAN T S N, SESHADRI S K. Electroless Ni-P Composite Coatings[J]. Journal of Applied Electrochemistry, 2003, 33(9): 807-816.
[17] NAZARI H, BARATI DARBAND G, AREFINIA R.A Review on Electroless Ni-P Nanocomposite Coatings: Effect of Hard, Soft, and Synergistic Nanoparticles[J]. Journal of Materials Science, 2023, 58(10): 4292-4358.
[18] NUR ARIFFAH M S, NURULAKMAL M S, ANASYIDA A S, et al. Surface Roughness, Wear and Thermal Conductivity of Ternary Electroless Ni-Ag-P Coating on Copper Substrate[J]. Materials Research Express, 2020, 7(2): 026536.
[19] CHEN J M, DOU Y B, ZHAO R Y, et al.Study the Al2O3 Nano-Fillers Performances of Metallic Hollow Microlattice Material as a Heat Insulation on the High-Temperature[J]. Materials Letters, 2024, 358: 135739.
[20] HEAKAL F E, MAANOUM M A.Role of Some Plating Parameters in the Properties of Ni-P/Al2O3 Nanocomposite Coatings on Mg Alloy[J]. International Journal of Electrochemical Science, 2016, 11(8): 7198-7215.
[21] DE HAZAN Y, ZIMMERMANN D, Z’GRAGGEN M, et al. Homogeneous Electroless Ni-P/SiO2 Nanocomposite Coatings with Improved Wear Resistance and Modified Wear Behavior[J]. Surface and Coatings Technology, 2010, 204(21/22): 3464-3470.
[22] SOLEIMANI R, MAHBOUBI F, KAZEMI M, et al.Corrosion and Tribological Behaviour of Electroless Ni-P/Nano-SiC Composite Coating on Aluminium 6061[J]. Surface Engineering, 2015, 31(9): 714-721.
[23] THAKUR I S, PANDEY V S, RAO P S, et al.Tribological Study of Mechanically Milled Graphite Nanoparticles Codeposited in Electroless Ni-P Coatings[J]. Metal Powder Report, 2020, 75(6): 344-349.
[24] ASTM. Test Method for Thermal Diffusivity by the Flash Method: ASTM E1461-13[S]. Philadelphia: ASTM International, 2013.
[25] CHEN J M, LIU L Q, SHAN L, et al.Thermal Control Performance of Phase Change Material Combined with Ultra-Light Hollow Metallic Microlattice for Microsatellites[J]. Applied Thermal Engineering, 2023, 227: 120374.
[26] SHAN L, LIU L Q, CHEN J M.A Prediction Model of the Effective Thermal Conductivity of the Micro-Lattice Phase Change Material[J]. Thermal Science, 2024, 28(4 Part B): 3253-3266.

基金

国家自然科学基金(52075326)

PDF(14702 KB)

Accesses

Citation

Detail

段落导航
相关文章

/