空间导电滑环真空载流摩擦磨损行为研究

骆孝武, 李璞, 周青华, 陈佳俊, 张强, 刘艳敏, 朱浩

装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 55-65.

PDF(30603 KB)
PDF(30603 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 55-65. DOI: 10.7643/issn.1672-9242.2025.06.007
航空航天装备

空间导电滑环真空载流摩擦磨损行为研究

  • 骆孝武1a,1b,1c, 李璞1a,1b,1c,*, 周青华1a,1b,1c,*, 陈佳俊2, 张强3, 刘艳敏3, 朱浩1d
作者信息 +

Investigation on Friction and Wear Behavior of Space Conductive Slip Rings under Vacuum Current-carrying Conditions

  • LUO Xiaowu1a,1b,1c, LI Pu1a,1b,1c,*, ZHOU Qinghua1a,1b,1c,*, CHEN Jiajun2, ZHANG Qiang3, LIU Yanmin3, ZHU Hao1d
Author information +
文章历史 +

摘要

目的 探究空间导电滑环在真空环境下载流摩擦磨损行为及演化规律,为提升航天器旋转电传输机构可靠性提供数据支撑。方法 利用自主搭建的真空载流摩擦磨损试验机,系统研究滑动速度、接触载荷和电流强度对摩擦系数、接触电阻及磨损形貌的影响,并通过大气与真空条件下的对比试验揭示界面损伤机理。结果 在大气条件下,低速(1 r/min)时,摩擦系数为0.45±0.05,磨损宽度约0.21 mm,经跑合后,接触电阻稳定在(0.06±0.03) Ω;中速(10 r/min)时,摩擦系数降至约0.35,磨损宽度增至0.58 mm;高速(100 r/min)下,摩擦系数降至0.3以下,磨损宽度约0.89 mm。真空条件下,载荷试验显示,0.3 N时,磨损宽度为0.29 mm,1 N时降至0.17 mm,3 N时升至约0.27 mm。电流试验表明,在大气条件下,6 A时的接触电阻波动较大,20 A时显著降低,且摩擦系数约为0.3;在真空条件下,6 A时的摩擦系数约0.2,20 A时因焦耳热与局部电弧作用,导致摩擦系数和法向力明显波动。结论 滑动速度、载荷和电流呈耦合效应,在真空中较优化载荷约为1 N、低速约1 r/min、电流约6 A。通过优化速度-载荷-电流组合可有效抑制界面损伤,为空间导电滑环工况参数设计及可靠性评估提供了可靠依据。

Abstract

The work aims to investigate the current-carrying friction and wear behavior of space conductive slip rings in a vacuum environment and their evolution, so as to provide data support for enhancing the reliability of rotary electric transmission systems in spacecraft. A self-developed vacuum current-carrying friction and wear test rig was used to systematically study the effects of sliding speed, contact load, and current intensity on the friction coefficient, contact resistance, and wear morphology. Comparative experiments under atmospheric and vacuum conditions were conducted to reveal the damage mechanisms at the contact interface. Under atmospheric conditions, at low speed (1 r/min), the friction coefficient was 0.45±0.05, with a wear width of approximately 0.21 mm; and after a running-in period, the contact resistance stabilized at (0.06±0.03) Ω. At medium speed (10 r/min), the friction coefficient decreased to about 0.35 while the wear width increased to 0.58 mm. At high speed (100 r/min), the friction coefficient dropped below 0.3, and the wear width reached approximately 0.89 mm. Under vacuum conditions, the load tests showed a wear width of 0.29 mm at 0.3 N, which decreased to 0.17 mm at 1 N and then increased to about 0.27 mm at 3 N. Current tests indicated that under atmospheric conditions, the contact resistance fluctuated considerably at 6 A and was significantly reduced at 20 A, with the friction coefficient remaining around 0.3. Under vacuum conditions, the friction coefficient was about 0.2 at 6 A; while at 20 A, due to Joule heating and local arc effects, both the friction coefficient and normal force fluctuated markedly. In conclusion, sliding speed, load, and current exhibit a coupled effect. In vacuum conditions, an optimized load of approximately 1 N, a low speed of about 1 r/min, and a current around 6 A effectively suppress interface damage by optimizing the speed-load-current combination. These findings provide a reliable basis for the design of operating parameters and reliability evaluation of space conductive slip rings.

关键词

导电滑环 / 铍青铜 / 真空载流摩擦磨损 / 磨损形貌 / 黏着磨损 / 接触电阻 / 电弧侵蚀

Key words

conductive slip ring / beryllium bronze / vacuum current-carrying friction and wear / wear morphology / adhesive wear / contact resistance / arc erosion

引用本文

导出引用
骆孝武, 李璞, 周青华, 陈佳俊, 张强, 刘艳敏, 朱浩. 空间导电滑环真空载流摩擦磨损行为研究[J]. 装备环境工程. 2025, 22(6): 55-65 https://doi.org/10.7643/issn.1672-9242.2025.06.007
LUO Xiaowu, LI Pu, ZHOU Qinghua, CHEN Jiajun, ZHANG Qiang, LIU Yanmin, ZHU Hao. Investigation on Friction and Wear Behavior of Space Conductive Slip Rings under Vacuum Current-carrying Conditions[J]. Equipment Environmental Engineering. 2025, 22(6): 55-65 https://doi.org/10.7643/issn.1672-9242.2025.06.007
中图分类号: V443   

参考文献

[1] 张强, 张可墨, 刘继奎, 等. 空间导电滑环技术研究与发展综述[J]. 机械工程学报, 2022, 58(22): 334-348.
ZHANG Q, ZHANG K M, LIU J K, et al.Overview of Research and Development on Space Slip Rings[J]. Journal of Mechanical Engineering, 2022, 58(22): 334-348.
[2] 刘钰, 程建, 祁松松, 等. 导电滑环热真空试验污染物抑制方法试验研究[J]. 环境技术, 2020, 38(4): 58-61.
LIU Y, CHENG J, QI S S, et al.Experimental Study on Contaminant Suppression Method for Thermal Vacuum Test of Electric Conduction Link[J]. Environmental Technology, 2020, 38(4): 58-61.
[3] 薛萍, 陈少兵, 刘丽. 电滑环中的导电环和电刷[J]. 光纤与电缆及其应用技术, 2012(1): 11-13.
XUE P, CHEN S B, LIU L.The Ring and Brush in the Slip-Ring[J]. Optical Fiber & Electric Cable and Their Applications, 2012(1): 11-13.
[4] 卢锦明, 邢立华, 李耀娥, 等. 精密导电滑环的关键技术及发展趋势[J]. 导航与控制, 2015, 14(1): 20-26.
LU J M, XING L H, LI Y E, et al.The Key Technology and Developing Trend of the Precision Conductive Slip-Ring[J]. Navigation and Control, 2015, 14(1): 20-26.
[5] 惠阳, 刘贵民, 闫涛, 等. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
HUI Y, LIU G M, YAN T, et al.Research Status and Prospect of Current-Carrying Friction and Wear[J]. Materials Reports, 2019, 33(13): 2272-2280.
[6] 李韶林, 国秀花, 宋克兴, 等. 载流摩擦用铜基复合材料的研究现状及展望[J]. 材料热处理学报, 2021, 42(4): 1-16.
LI S L, GUO X H, SONG K X, et al.Research Progress and Prospect of Copper Matrix Materials for Current- Carrying Friction[J]. Transactions of Materials and Heat Treatment, 2021, 42(4): 1-16.
[7] 宋英健, 杨正海, 焦金隆, 等. 载流摩擦用铜-碳复合材料研究现状及展望[J]. 润滑与密封, 2024, 49(9): 191-200.
SONG Y J, YANG Z H, JIAO J L, et al.Research Progress and Prospect of Copper-Carbon Composites for Current-Carrying Friction[J]. Lubrication Engineering, 2024, 49(9): 191-200.
[8] 周元子, 李利, 朱林林, 等. 银基复合材料真空电接触特性[J]. 中南大学学报(自然科学版), 2020, 51(11): 3152-3158.
ZHOU Y Z, LI L, ZHU L L, et al.Sliding Electrical Contact Behavior of Silver-Based Composite in Vacuum[J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3152-3158.
[9] 王炳辉, 宋晨飞, 钱志源, 等. 大气及真空环境下电流对柔性环滚动载流摩擦性能的影响[J]. 摩擦学学报, 2024, 44(5): 666-676.
WANG B H, SONG C F, QIAN Z Y, et al.Influence of Current on Rolling Current-Carrying Friction Performance of Flexible Ring in Atmosphere and Vacuum Environment[J]. Tribology, 2024, 44(5): 666-676.
[10] 段伟成. 一种卫星导电滑环载流摩擦副的低磨损特性研究[D]. 合肥: 合肥工业大学, 2022.
DUAN W C.Study on Low Wear Characteristics of a Current-Carrying Friction Pair of Satellite Conductive Slip Ring[D]. Hefei: Hefei University of Technology, 2022.
[11] 李聪慧, 张燕燕, 曾泽祥, 等. 载流摩擦磨损研究进展[J]. 润滑与密封, 2022, 47(7): 153-167.
LI C H, ZHANG Y Y, ZENG Z X, et al.Research Progress of Current-Carrying Friction and Wear[J]. Lubrication Engineering, 2022, 47(7): 153-167.
[12] 李长江, 李臣政, 张涛, 等. 低轨卫星滑环磨损寿命影响因素研究[J]. 上海航天, 2019, 36(S2): 79-83.
LI C J, LI C Z, ZHANG T, et al.Study on the Factors Affecting Wear Life of the Slip Ring of LEO Satellite[J]. Aerospace Shanghai (Chinese & English), 2019, 36(S2): 79-83.
[13] BOUCHOUCHA A, CHEKROUD S, PAULMIER D.Influence of the Electrical Sliding Speed on Friction and Wear Processes in an Electrical Contact Copper-Stainless Steel[J]. Applied Surface Science, 2004, 223(4): 330-342.
[14] GU B F, YANG C X.A Review of the Computational Investigation of Three-Dimensional Transient Magneto- Thermal Coupling Characteristics of Electromagnetic Railgun Armature and Rail in High-Speed Sliding Electrical Contact[J]. Journal of Physics: Conference Series, 2023, 2478(8): 082016.
[15] JONCKHEERE B, BOUZERAR R, AIT MOHAMED S, et al.Electrical Arc Transfer in a Multi-Contact Interface[J]. Sensors and Actuators A: Physical, 2022, 335: 113215.
[16] 李克敏, 上官宝, 杜三明, 等. 摩擦速度和电流密度对铜基复合材料载流摩擦磨损性能的影响[J]. 机械工程材料, 2015, 39(3): 22-27.
LI K M, SHANGGUAN B, DU S M, et al.Effects of Friction Velocity and Current Density on Current-Carrying Friction and Wear Properties of Copper Matrix Composites[J]. Materials for Mechanical Engineering, 2015, 39(3): 22-27.
[17] 田磊, 孙乐民, 上官宝, 等. 摩擦速度对铜/碳复合材料载流摩擦磨损性能的影响[J]. 机械工程材料, 2012, 36(9): 69-72.
TIAN L, SUN L M, SHANGGUAN B, et al.Effect of Friction Velocity on Current Carrying Friction and Wear Properties of Copper-Graphite Composites[J]. Materials for Mechanical Engineering, 2012, 36(9): 69-72.
[18] 高希瑞, 李恒青, 刘洋赈. 不同载荷下镀镍石墨-铜基复合材料的载流摩擦性能[J]. 材料热处理学报, 2024, 45(1): 34-41.
GAO X R, LI H Q, LIU Y Z.Current-Carrying Tribological Properties of Ni-Coated Graphite-Copper Matrix Composites under Different Loads[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 34-41.
[19] 郭凤仪, 马同立, 陈忠华, 等. 不同载流条件下滑动电接触特性[J]. 电工技术学报, 2009, 24(12): 18-23.
GUO F Y, MA T L, CHEN Z H, et al.Characteristics of the Sliding Electric Contact under Different Currents[J]. Transactions of China Electrotechnical Society, 2009, 24(12): 18-23.
[20] 范长湘, 徐赛, 杜杰彬, 等. 银基电接触材料载流摩擦磨损的研究进展[J]. 材料研究与应用, 2023, 17(3): 495-502.
FAN C X, XU S, DU J B, et al.Research Progress in Current-Carrying Friction and Wear of Silver-Based Electrical Contact Materials[J]. Materials Research and Application, 2023, 17(3): 495-502.
[21] 谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进展[J]. 摩擦学学报, 2019, 39(5): 656-668.
XIE B H, JU P F, JI L, et al.Research Progress on Tribology of Electrical Contact Materials[J]. Tribology, 2019, 39(5): 656-668.
[22] SENOUCI A, FRENE J, ZAIDI H.Wear Mechanism in Graphite-Copper Electrical Sliding Contact[J]. Wear, 1999, 225: 949-953.
[23] YANG Z H, ZHANG Y Z, ZHAO F, et al.Dynamic Variation of Arc Discharge during Current-Carrying Sliding and Its Effect on Directional Erosion[J]. Tribology International, 2016, 94: 71-76.
[24] WEN X Q, YUWEN F Y, DING Z Q, et al.Electric Arc-Induced Damage on Electroless Ag Film Using Ionic Liquid as a Lubricant under Sliding Electrical Contact[J]. Tribology International, 2019, 135: 269-276.
[25] 龚聪煜, 聂裕宸, 曹中清, 等. 模拟界面污染条件下的电接触性能及磨损研究[J]. 装备环境工程, 2022, 19(4): 108-116.
GONG C Y, NIE Y C, CAO Z Q, et al.Electrical Contact Performance and Wear under Simulated Interface Pollution Conditions[J]. Equipment Environmental Engineering, 2022, 19(4): 108-116.
[26] ZHU X C, ZHANG S M, ZHANG L, et al.Frictional Behavior and Wear Mechanisms of Ag/MoS2/WS2 Composite under Reciprocating Microscale Sliding[J]. Tribology International, 2023, 185: 108510.
[27] KZIAZYK T, GAVIGNET E, CORNUAULT P H, et al.Review on Test Benches Studying Sliding Electrical Contact and Synthesis of Experimental Results[J]. Energies, 2023, 16(3): 1294.
[28] 张淑敏, 刘兰英, 于义德, 等. 银基合金滑环真空载流摩擦特性[J]. 粉末冶金材料科学与工程, 2025, 30(1): 51-59.
ZHANG S M, LIU L Y, YU Y D, et al.Friction Properties of Silver-Based Alloy Slip Rings under Vacuum Current- Carrying[J]. Materials Science and Engineering of Powder Metallurgy, 2025, 30(1): 51-59.
[29] HE L P, CAI Z B, PENG J F, et al.Effects of Oxidation Layer and Roughness on the Fretting Wear Behavior of Copper under Electrical Contact[J]. Materials Research Express, 2019, 6(12): 1265e3.
[30] ZHANG S R, KANG H J, CHENG M, et al.A Research on the Electrical Sliding Behavior Wear of Dual-Scale Particulate Reinforced Copper Matrix Composites[J]. Materials Characterization, 2022, 184: 111708.
[31] FENG J, SONG K X, LIANG S H, et al.Electrical Wear of TiB2 Particle-Reinforced Cu and Cu-Cr Composites Prepared by Vacuum Arc Melting[J]. Vacuum, 2020, 175: 109295.
[32] WEI P, WANG X Q, JING G R, et al.Research Progress on Current-Carrying Friction with High Stability and Excellent Tribological Behavior[J]. Lubricants, 2024, 12(10): 349.
[33] 李聪慧. 铍青铜刷丝载流摩擦性能及磨损机制研究[D]. 洛阳: 河南科技大学, 2022.
LI C H.Study on Current-Carrying Friction Performance and Wear Mechanism of Beryllium Bronze Brush Wire[D]. Luoyang: Henan University of Science and Technology, 2022.

PDF(30603 KB)

Accesses

Citation

Detail

段落导航
相关文章

/