沉积温度对单一气源PECVD SiC涂层微观结构及力学性能的影响

李洋, 樊哲琼, 卢永恒, 郜建全, 王炫力, 宋希文

装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 101-110.

PDF(5877 KB)
PDF(5877 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 101-110. DOI: 10.7643/issn.1672-9242.2025.06.012
重大工程装备

沉积温度对单一气源PECVD SiC涂层微观结构及力学性能的影响

  • 李洋1a, 樊哲琼2, 卢永恒3,4, 郜建全1b, 王炫力1b,*, 宋希文1a,5,*
作者信息 +

Effect of Deposition Temperature on the Microstructure and Mechanical Properties of SiC Coatings Prepared by Single Gas Source PECVD

  • LI Yang1a, FAN Zheqiong2, LU Yongheng3,4, GAO Jianquan1b, WANG Xuanli1b,*, SONG Xiwen1a,5,*
Author information +
文章历史 +

摘要

目的 在锆合金外表面低温(520、550、580 ℃)沉积原子百分比接近1︰1的SiC涂层,提高锆合金包壳管力学性能,以延长其使用寿命。方法 采用射频等离子体增强化学气相沉积(PECVD)法,以甲基硅烷(CH3SiH3)作为唯一反应气源,以氢气(H2)作为唯一载气,于低温条件下在锆合金包壳管表面沉积碳化硅(SiC)涂层。采用 X射线衍射仪、拉曼光谱仪、X射线光电子能谱表征涂层的成分及化学结构,采用扫描电子显微镜和能谱仪进行形貌观察和元素分析,采用微划痕测试仪对涂层进行结合力测试,采用纳米压痕对涂层进行硬度测试,采用万能试验机对锆合金包壳管进行轴向拉伸性能测试。结果 在射频功率为300 W,CH3SiH3︰H2气体流量比为2︰1,工作气压为60 Pa,沉积温度为520~580 ℃条件下,沉积的SiC涂层均表现为非晶态,C/Si原子比接近1︰1。随着沉积温度提高至580 ℃,涂层与基底结合力从6 N提高至15 N,硬度由14.4 GPa提高至22.6 GPa,弹性模量由174.6 GPa提高至304.6 GPa,抗拉强度与屈服强度略有下降,分别下降至632 MPa与241 MPa,延伸率提高至24.06%。结论 随着沉积温度的提高,涂层表面逐渐致密化,与基底的结合力变强,涂层硬度与弹性模量随沉积温度上升而增长,锆合金包壳管的抗拉强度与屈服强度略有下降,但延伸率显著提高,有助于延长锆合金包壳管的使用寿命。

Abstract

The work aims to deposit SiC coatings with an atomic percentage close to 1:1 on the outer surface of zirconium alloy at low temperature (520 ℃, 550 ℃ and 580 ℃) to improve the mechanical properties of zirconium alloy cladding tube and prolong its service life. By the radio frequency plasma enhanced chemical vapor deposition (PECVD) method, the silicon carbide (SiC) coating was deposited on the surface of zirconium alloy cladding tube at low temperature with methylsilane (CH3SiH3) as the only reaction gas source and hydrogen (H2) as the only carrier gas. The composition and chemical structure of the coating were characterized by X-ray diffractometer, Raman spectrometer, and X-ray photoelectron spectroscopy. Then, the scanning electron microscopy and energy dispersive spectroscopy were used to observe surface and cross-sectional morphology and analyze the content of various elements in the coating. The micro scratch tester was employed to test the adhesion of the coating and the nanoindentation was adopted to test the hardness of the coating. Moreover, the axial tensile performance testing was conducted on zirconium alloy cladding tubes with a universal testing machine. Under the conditions of RF power of 300 W, gas flow ratio of CH3SiH3:H2=2:1, pressure of 60 Pa, and deposition temperature of 520-580 ℃, the deposited SiC coatings exhibited amorphous state, with an atomic percentage C/Si ratio close to 1:1. As the deposition temperature increased to 580 ℃, the bonding force with the substrate increased from 6 N to 15 N, the hardness increased from 14.4 GPa to 22.6 GPa, the elastic modulus increased from 174.6 GPa to 304.6 GPa, the tensile strength and yield strength decreased slightly to 632 MPa and 241 MPa respectively, and the elongation increased to 24.06%. With the increase of the deposition temperature, the surface of the coating becomes denser, and the bonding force with the substrate becomes stronger. The hardness and elastic modulus of the coating increase with the increase of deposition temperature. The tensile strength and yield strength of zirconium alloy cladding tube decrease slightly, but the elongation rate increases significantly, which is helpful to prolong the service life of zirconium alloy cladding tubes.

关键词

锆合金包壳管 / 碳化硅涂层 / 射频等离子体增强化学气相沉积 / 甲基硅烷 / 沉积温度 / 力学性能

Key words

zirconium alloy cladding tube / silicon carbide coating / RF plasma enhanced chemical vapor deposition / methylsilane / deposition temperature / mechanical property

引用本文

导出引用
李洋, 樊哲琼, 卢永恒, 郜建全, 王炫力, 宋希文. 沉积温度对单一气源PECVD SiC涂层微观结构及力学性能的影响[J]. 装备环境工程. 2025, 22(6): 101-110 https://doi.org/10.7643/issn.1672-9242.2025.06.012
LI Yang, FAN Zheqiong, LU Yongheng, GAO Jianquan, WANG Xuanli, SONG Xiwen. Effect of Deposition Temperature on the Microstructure and Mechanical Properties of SiC Coatings Prepared by Single Gas Source PECVD[J]. Equipment Environmental Engineering. 2025, 22(6): 101-110 https://doi.org/10.7643/issn.1672-9242.2025.06.012
中图分类号: TL344   

参考文献

[1] 刘家欢, 李争显, 王彦峰, 等. 锆合金包壳事故容错涂层研究进展[J]. 稀有金属材料与工程, 2021, 50(8): 3003-3010.
LIU J H, LI Z X, WANG Y F, et al.Research Progress Regarding Accident Tolerant Coating on Zirconium Alloy Cladding[J]. Rare Metal Materials and Engineering, 2021, 50(8): 3003-3010.
[2] 王华才, 程焕林, 宋武林, 等. 压水堆完整和破损燃料棒燃料包壳化学相互作用层拉曼特征分析[J]. 原子能科学技术, 2023, 57(3): 619-629.
WANG H C, CHENG H L, SONG W L, et al.Raman Characteristics Analysis of Fuel-Cladding Chemical Interaction Layer for Intact and Leak PWR Fuel Rods[J]. Atomic Energy Science and Technology, 2023, 57(3): 619-629.
[3] 郑新海, 尹邦跃, 吴学志. 锆合金包壳水侧SiC涂层研究[J]. 原子能科学技术, 2019, 53(6): 1085-1090.
ZHENG X H, YIN B Y, WU X Z.Study on SiC Coating on Waterside of Zirconium Alloy Cladding[J]. Atomic Energy Science and Technology, 2019, 53(6): 1085-1090.
[4] LI M, ZHOU X B, YANG H, et al.The Critical Issues of SiC Materials for Future Nuclear Systems[J]. Scripta Materialia, 2018, 143: 149-153.
[5] 刘荣正, 刘马林, 邵友林, 等. 碳化硅材料在核燃料元件中的应用[J]. 材料导报, 2015, 29(1): 1-5.
LIU R Z, LIU M L, SHAO Y L, et al.Application of Silicon Carbide in Nuclear Fuel Elements[J]. Materials Review, 2015, 29(1): 1-5.
[6] TERRANI K A, PARISH C M, SHIN D, et al.Protection of Zirconium by Alumina- and Chromia-Forming Iron Alloys under High-Temperature Steam Exposure[J]. Journal of Nuclear Materials, 2013, 438(1/2/3): 64-71.
[7] HE X J, ZHAN H Y, LIN J, et al.Effect of Si Content of CrSi-Based Coatings on Their Oxidation Resistance in High Temperature Air[J]. Ceramics International, 2020, 46(8): 11357-11363.
[8] HU X L, LUO X, YANG X, et al.Effects of Deposition Temperature on Microstructures and Ablative Properties of SiC Coatings Prepared by CVD from Methylsilane[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(12): 3797-3811.
[9] 刘荣军, 周新贵, 张长瑞, 等. 化学气相沉积工艺制备SiC涂层[J]. 宇航材料工艺, 2002, 32(5): 42-44.
LIU R J, ZHOU X G, ZHANG C R, et al.SiC Coatings Prepared by Chemical Vapor Deposition[J]. Aerospace Materials & Technology, 2002, 32(5): 42-44.
[10] KWON S, PARK Y, BAN W, et al.Effect of Plasma Power on Properties of Hydrogenated Amorphous Silicon Carbide Hardmask Films Deposited by PECVD[J]. Vacuum, 2020, 174: 109187.
[11] LUKIANOV A N, KLYUI N I, SHA B, et al.Effect of Discharge Power and Silicon Content on Optical and Mechanical Properties of Carbon-Rich Amorphous Silicon Carbide Films Obtained by PECVD[J]. Journal of Alloys and Compounds, 2019, 801: 285-294.
[12] 于方丽, 白宇, 秦毅, 等. PECVD下基底温度对SiC薄膜形态、成分及生长速度的影响[J]. 无机材料学报, 2013, 28(2): 201-206.
YU F L, BAI Y, QIN Y, et al.Influence of Substrate Temperature on the Morphology, Composition and Growth Rate of SiC Films Deposited by PECVD[J]. Journal of Inorganic Materials, 2013, 28(2): 201-206.
[13] LI M M, JIANG L H, SUN Y H, et al.Synthesis and Structural Evolution of Hydrogenated Amorphous Silicon Carbide Thin Film with Carbon Nanostructures[J]. Journal of Non-Crystalline Solids, 2019, 503: 252-259.
[14] NASS K C F, RADI P A, LEITE D M G, et al. Tribomechanical and Structural Properties of A-SiC: H Films Deposited Using Liquid Precursors on Titanium Alloy[J]. Surface and Coatings Technology, 2015, 284: 240-246.
[15] LU C Y, CHENG L F, ZHAO C N, et al.Effects of Residence Time and Reaction Conditions on the Deposition of SiC from Methyltrichlorosilane and Hydrogen[J]. International Journal of Applied Ceramic Technology, 2012, 9(3): 642-649.
[16] WU Q, YU S, ZHONG H, et al.Preparation of Silicon Carbide Coating by Chemical Vapor Deposition by Using Hexamethyldisilylamine Precursor[J]. Surface and Coatings Technology, 2018, 334: 78-83.
[17] 谭瑞轩, 王洪磊, 余金山, 等. 锆合金包壳管内壁SiC涂层的PECVD制备与性能[J]. 粉末冶金材料科学与工程, 2020, 25(3): 206-212.
TAN R X, WANG H L, YU J S, et al.Preparation and Properties of SiC Coating on Inner Surface of Zr-Cladding by PECVD[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(3): 206-212.
[18] 王晓婧, 刘艳红, 冯硕, 等. 锆合金表面磁控溅射制备SiC/Cr复合涂层的研究[J]. 真空科学与技术学报, 2018, 38(4): 332-338.
WANG X J, LIU Y H, FENG S, et al.Synthesis and Property Characterization of Magnetron Sputtered SiC/Cr Coatings on Zr-Based Alloy[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(4): 332-338.
[19] SMIT C, VAN SWAAIJ R A C M M, DONKER H, et al. Determining the Material Structure of Microcrystalline Silicon from Raman Spectra[J]. 2003, 94(5): 3582-3588.
[20] KIM D, LEE H J, JANG C, et al.Influence of Microstructure on Hydrothermal Corrosion of Chemically Vapor Processed SiC Composite Tubes[J]. Journal of Nuclear Materials, 2017, 492: 6-13.
[21] SAIKIA B J, PARTHASARATHY G, GORBATSEVICH F F, et al.Characterization of Amphiboles from the Kola Super-Deep Borehole, Russia by Raman and Infrared Spectroscopy[J]. Geoscience Frontiers, 2021, 12(4): 101134.
[22] OUESLATI I, HECHMI M, JEBARI E, et al.Rate Coefficients and Kinetic Isotope Effects of the Abstraction Reaction of H Atoms from Methylsilane[J]. Molecular Physics, 2016, 114(22): 3396-3406.
[23] ABYZOV A M, SMIRNOV E P.Kinetics of SiC Chemical Vapor Deposition from Methylsilane[J]. Inorganic Materials, 2000, 36(9): 884-890.
[24] JOHNSON A D, PERRIN J, MUCHA J A, et al.Kinetics of Silicon Carbide CVD: Surface Decomposition of Silacyclobutane and Methylsilane[J]. The Journal of Physical Chemistry, 1993, 97(49): 12937-12948.
[25] 张翼英, 杜丕一, 韩高荣, 等. PECVD法制备a-Si1-xCx∶H薄膜的结构及光学性能研究[J]. 真空科学与技术学报, 2005, 25(3): 192-195.
ZHANG Y Y, DU P Y, HAN G R, et al.Structural and Optical Properties of A-Si1-xCx∶H Thin Films Prepared by RF-PECVD[J]. Chinese Journal of Vacuum Science and Technology, 2005, 25(3): 192-195.
[26] 王晓婧, 刘艳红, 刘威, 等. 锆合金表面射频磁控溅射SiC涂层制备工艺参数优选[J]. 材料保护, 2018, 51(4): 74-79.
WANG X J, LIU Y H, LIU W, et al.Process Parameter Optimization of SiC Coatings on Zirconium Alloy Surface by Radio Frequency Magnetron Sputtering[J]. Materials Protection, 2018, 51(4): 74-79.
[27] 唐翠兰, 王涛, 黄景林, 等. 用于ICF的非晶SiC微球制备及微观结构研究[J]. 原子能科学技术, 2017, 51(5): 949-955.
TANG C L, WANG T, HUANG J L, et al.Fabrication and Microstructure Study of Amorphous SiC Microsphere for ICF[J]. Atomic Energy Science and Technology, 2017, 51(5): 949-955.
[28] 王子梁, 刘荣正, 刘马林, 等. 致密SiC包覆层低温流化床化学气相沉积制备及形成机制[J]. 复合材料学报, 2016, 33(8): 1777-1784.
WANG Z L, LIU R Z, LIU M L, et al.Low Temperature Synthesis and Formation Mechanism of Dense SiC Coating Layer by Fluidized Bed Chemical Vapor Deposition[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1777-1784.
[29] ZHANG L, CHEN G, HE Z B, et al.Investigation of Working Pressure on the Surface Roughness Controlling Technology of Glow Discharge Polymer Films Based on the Diagnosed Plasma[J]. Plasma Science and Technology, 2017, 19(7): 075505.
[30] 贾林涛, 王梦千, 朱界, 等. 化学气相沉积法从MTS-H2-N2前驱体制备碳化硅涂层[J]. 陶瓷学报, 2020, 41(2): 257-263.
JIA L T, WANG M Q, ZHU J, et al.Preparation of Silicon Carbide Coatings from MTS-H2-N2 Precursors with Chemical Vapor Deposition[J]. Journal of Ceramics, 2020, 41(2): 257-263.
[31] AL-OLAYYAN Y, FUCHS G E, BANEY R, et al.The Effect of Zircaloy-4 Substrate Surface Condition on the Adhesion Strength and Corrosion of SiC Coatings[J]. Journal of Nuclear Materials, 2005, 346(2/3): 109-119.
[32] 王亚霁, 墨洪磊, 孙玉利, 等. 基于微米划痕实验的单晶硅去除机制研究[J]. 硅酸盐学报, 2019, 47(10): 1509-1514.
WANG Y J, MO H L, SUN Y L, et al.Analysis of Monocrystalline Silicon Removal by Micron Scratch Test[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 1509-1514.
[33] 刘荣军, 张长瑞, 周新贵, 等. CVD SiC致密表面涂层制备及表征[J]. 材料工程, 2005, 33(4): 3-6.
LIU R J, ZHANG C R, ZHOU X G, et al.Preparation and Characterization of Chemical Vapor Deposited Dense SiC Surface Coatings[J]. Journal of Materials Engineering, 2005, 33(4): 3-6.
[34] 景君怡, 付前刚, 贾研. SiC纳米线增韧过渡层对C/C复合材料表面CVD-SiC涂层性能的影响[C]//中国金属学会炭素材料分会第三十届学术交流会论文集. 西安: 西北工业大学, 2016.
JINGJ Y, FUQ G, JIA Y.Effect of SiC Nanowire Toughened Transition Layer on the Properties of CVD SiC Coating on the Surface of C/C Composites[C]//Proceedings of the 30th Academic Exchange Meeting of Carbon Materials Branch of China Metal Society. Xi'an: Northwestern Polytechnic University, 2016.
[35] OLIVER W C, PHARR G M.Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20.
[36] PAGE T F, PHARR G M, HAY J C, et al.Nanoindentation Characterisation of Coated Systems: P: S2—A New Approach Using the Continuous Stiffness Technique[J]. MRS Online Proceedings Library, 1998, 522(1): 53-64.
[37] 马显锋, 吴艳青, 牛莉莎, 等. 碳化硅薄膜的力学性能测试分析[J]. 实验力学, 2007, 22(1): 49-56.
MA X F, WU Y Q, NIU L S, et al.Measurement and Analysis on the Mechanical Properties of Silicon Carbide Film[J]. Journal of Experimental Mechanics, 2007, 22(1): 49-56.
[38] 王新华. 非晶态和纳米晶碳化硅薄膜的制备及力学性能[J]. 真空科学与技术学报, 2004, 24(3): 173-176.
WANG X H.Growth and Mechanical Properties of Amorphous and Nanostructured SiC Films[J]. Chinese Journal of Vacuum Science and Technology, 2004, 24(3): 173-176.
[39] 张聪惠, 于飞, 王耀勉, 等. 表面机械研磨处理工业纯锆的组织和拉伸性能研究[J]. 稀有金属, 2013, 37(1): 1-5.
ZHANG C H, YU F, WANG Y M, et al.Microstructure and Tensile Properties of Industrial Pure Zirconium Processed by Surface Mechanical Attrition Treatment[J]. Chinese Journal of Rare Metals, 2013, 37(1): 1-5.
[40] 朱广伟, 赵乙丞, 赵帆, 等. 张力退火对Zr-4合金织构和再结晶行为的影响[J]. 工程科学学报, 2020, 42(9): 1174-1181.
ZHU G W, ZHAO Y C, ZHAO F, et al.Effect of Stress Annealing on Texture and Recrystallization Behavior of Zr-4 Alloy[J]. Chinese Journal of Engineering, 2020, 42(9): 1174-1181.
[41] 赵西成, 段晓鸽, 张聪慧, 等. 退火温度对SMAT处理Zr-4合金组织和性能的影响[J]. 材料热处理学报, 2009, 30(5): 60-63.
ZHAO X C, DUAN X G, ZHANG C H, et al.Effects of Annealing Temperature on Microstructure and Properties of Zr-4 Processed by Surface Mechanical Attrition Treatment[J]. Transactions of Materials and Heat Treatment, 2009, 30(5): 60-63.

基金

内蒙古科技大学基本科研业务费专项资金(2023QNJS016)

PDF(5877 KB)

Accesses

Citation

Detail

段落导航
相关文章

/