550 kV高压用液体硅橡胶套管护套自然环境不均匀老化特性研究

周秋华, 钱聪, 冯新民, 邓继文, 乔新涵, 曾闻天

装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 111-119.

PDF(3448 KB)
PDF(3448 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 111-119. DOI: 10.7643/issn.1672-9242.2025.06.013
重大工程装备

550 kV高压用液体硅橡胶套管护套自然环境不均匀老化特性研究

  • 周秋华1, 钱聪1, 冯新民1, 邓继文1, 乔新涵2,*, 曾闻天2
作者信息 +

Uneven Aging Characteristics of Liquid Silicone Rubber Bushing Sheath for 550 kV High Voltage in Natural Environment

  • ZHOU Qiuhua1, QIAN Cong1, FENG Xinmin1, DENG Jiwen1, QIAO Xinhan2,*, ZENG Wentian2
Author information +
文章历史 +

摘要

目的 揭示500 kV及以上高压套管的不均匀老化特性,为高压套管维护提供重要参考。方法 通过扫描电镜(SEM)、能谱(EDS)、傅里叶红外光谱(FTIR)以及热重(TG)等方法对高压套管护套层的不同部位进行微观特性分析,以明确不同部位的老化程度和老化机理,探索高压套管的不均匀老化规律。结果 同一根高压套管不同部分存在显著老化差异。典型部位主要特征基团、热解特征测试结果与微观形貌、元素分布表征结果一致,样品老化程度由高到低排序分别是高压伞裙上表面、中部伞裙上表面、护套本体外表面、护套本体内部切面。结论 由于电力系统绝缘材料发生故障的机制满足“水桶”效应,因此可将不均匀特性作为老化程度表征方法。在后续研究中,应进一步总结因老化问题而退役套管的不均匀参数,并提出基于不均匀度的退役标准。

Abstract

The work aims to reveal the uneven aging characteristics of 500 kV and above high-voltage, to provide important reference for the maintenance of high-voltage bushings. By methods such as scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TG), the microscopic characteristics of different parts of the high-voltage bushing sheath layer were analyzed to clarify the aging degree and mechanism of different parts, and to explore the uneven aging law of high-voltage bushings. Significant aging differences were observed in different parts of the same high-voltage bushing. The main characteristic functional groups and pyrolysis characteristics of typical parts were consistent with the microstructure and element distribution characterization results. The order of sample aging degree from high to low was upper surface of high-voltage umbrella skirt, upper surface of middle umbrella skirt, outer surface of sheath body and inner section of sheath body. Due to the mechanism of insulation material failure in the power system satisfying the "bucket" effect, the uneven characteristics can be used as a characterization method for aging degree. However, further research should summarize the uneven parameters of decommissioned bushings due to aging issues, and ultimately propose decommissioning standards based on unevenness.

关键词

自然环境 / 液体硅橡胶 / 高压套管 / 不均匀老化 / 元素分布 / 热重分析

Key words

natural environment / liquid silicone rubber / high-voltage bushing / uneven aging / element distribution / thermogravimetric analysis

引用本文

导出引用
周秋华, 钱聪, 冯新民, 邓继文, 乔新涵, 曾闻天. 550 kV高压用液体硅橡胶套管护套自然环境不均匀老化特性研究[J]. 装备环境工程. 2025, 22(6): 111-119 https://doi.org/10.7643/issn.1672-9242.2025.06.013
ZHOU Qiuhua, QIAN Cong, FENG Xinmin, DENG Jiwen, QIAO Xinhan, ZENG Wentian. Uneven Aging Characteristics of Liquid Silicone Rubber Bushing Sheath for 550 kV High Voltage in Natural Environment[J]. Equipment Environmental Engineering. 2025, 22(6): 111-119 https://doi.org/10.7643/issn.1672-9242.2025.06.013
中图分类号: TM216+.5   

参考文献

[1] 苏超, 黄石华, 应丽云, 等. 湿热环境下变压器套管绝缘特性劣化及机理分析[J]. 环境技术, 2024, 42(8): 182-190.
SU C, HUANG S H, YING L Y, et al.Analysis of Degradation and Mechanism of Insulating Characteristics of Transformer Bushings in Humid Environments[J]. Environmental Technology, 2024, 42(8): 182-190.
[2] 郁郁. 油浸式复合绝缘外套紫外老化特性及老化机制研究[D]. 成都: 西南交通大学, 2021.
YU Y.Study on Ultraviolet Aging Characteristics and Aging Mechanism of Oil-Immersed Composite Insulation Jacket[D]. Chengdu: Southwest Jiaotong University, 2021.
[3] 刘佳杰, 后振中, 杨庆浩, 等. 加成型液体硅橡胶的研究及应用进展[J]. 材料导报, 2024, 38(20): 262-268.
LIU J J, HOU Z Z, YANG Q H, et al.Research Progress of Additive Liquid Silicone Rubber[J]. Materials Reports, 2024, 38(20): 262-268.
[4] 梁英. 高温硫化(HTV)硅橡胶电晕老化特性及机理的研究[D]. 保定: 华北电力大学(河北), 2008.
LIANG Y.Study on Corona Aging Characteristics and Mechanism of HTV Silicone Rubber[D]. Baoding: North China Electric Power University, 2008.
[5] 李光茂, 杜钢, 杨杰, 等. 复合绝缘子用高温硫化硅橡胶老化图谱绘制方法[J]. 装备环境工程, 2023, 20(3): 117-123.
LI G M, DU G, YANG J, et al.Approach to Draw the Aging Map of High Temperature Vulcanized Silicone Rubber for Composite Insulator[J]. Equipment Environmental Engineering, 2023, 20(3): 117-123.
[6] 许靖涛, 葛张鑫, 王鑫, 等. 直接氟化对颗粒填充复合液体硅橡胶直流闪络性能的提升[J/OL]. 电气工程学报, 2024(11): 1-9. (2024-07-12). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQZH20240705001&dbname=CJFD&dbcode=CJFQ.
XU J T, GE Z X, WANG X, et al. Improvement of DC Flashover Performance of Particle-Filled Composite Liquid Silicone Rubber by Direct Fluorination[J/OL]. China Industrial Economics, 2024(11): 1-9. (2024-07-12). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=DQZH20240705001&dbname=CJFD&dbcode=CJFQ.
[7] 苗哲, 贾春, 吴超, 等. 极端环境温度对硅橡胶材料性能的影响研究进展[J]. 绝缘材料, 2024, 57(9): 15-25.
MIAO Z, JIA C, WU C, et al.Research Progress in Effects of Extreme Ambient Temperature on Properties of Silicone Rubber Materials[J]. Insulating Materials, 2024, 57(9): 15-25.
[8] 朱孟周, 李成钢, 刘洋, 等. 复合套管液体硅橡胶伞群老化现象的微观特性研究[J]. 电力与能源, 2015, 36(1): 68-73.
ZHU M Z, LI C G, LIU Y, et al.Micro Structual Characterization of Liquid Silicone Rubber’s Aging Phenomenon Used for Composite Bushing[J]. Power & Energy, 2015, 36(1): 68-73.
[9] 叶青. HXD1B型机车穿墙绝缘套管开裂原因分析与修复[J]. 内燃机与配件, 2019(16): 182-183.
YE Q.Cause Analysis and Repair of Cracking in Insulation Bushing of HXD1B Locomotive through Wall[J]. Internal Combustion Engine & Parts, 2019(16): 182-183.
[10] 晏年平, 徐驰, 陈灿, 等. 复合直流套管LSR伞裙粉化层与内层的微观对比研究[J]. 高压电器, 2019, 55(9): 134-142.
YAN N P, XU C, CHEN C, et al.Contrastive Study on Microscopic Characteristics of DC Composite Bushing’s LSR Shed Chalking Layer and Inner Layer[J]. High Voltage Apparatus, 2019, 55(9): 134-142.
[11] WANG X L, HONG X, CHEN P, et al.In-Situ and Quantitative Analysis of Aged Silicone Rubber Materials with Laser-Induced Breakdown Spectroscopy[J]. High Voltage, 2018, 3(2): 140-146.
[12] 韦晓星, 游传榜, 刘婉莹, 等. 换流站液体硅橡胶复合外套材料老化与性能恢复[J]. 电瓷避雷器, 2018(6): 145-149.
WEI X X, YOU C B, LIU W Y, et al.Aging and Property Recovery of Liquid Silicone Rubber Composite Coat Material in Converter Station[J]. Insulators and Surge Arresters, 2018(6): 145-149.
[13] 韦晓星, 徐驰, 卢文浩, 等. 运行多年的液体硅橡胶套管老化特征及修复效果评估[J]. 电瓷避雷器, 2020(3): 197-204.
WEI X X, XU C, LU W H, et al.Ageing Characteristics and Repairing Evaluation of Long-Term Operating LSR Bushings[J]. Insulators and Surge Arresters, 2020(3): 197-204.
[14] 贾志东, 杨朝翔, 王希林, 等. 基于憎水迁移性测试的复合绝缘子老化特性[J]. 高电压技术, 2015, 41(6): 1907-1914.
JIA Z D, YANG Z X, WANG X L, et al.Aging Characteristics of Composite Insulators Based on Hydrophobicity Transfer Test[J]. High Voltage Engineering, 2015, 41(6): 1907-1914.
[15] LI S, KE Y C, XIE L Y, et al.Study on the Aging of Three Typical Rubber Materials under High- and Low-Temperature Cyclic Environment[J]. e-Polymers, 2023, 23(1): 20228089.
[16] 高海峰, 贾志东, 关志成. 运行多年RTV涂料绝缘子表面涂层老化分析研究[J]. 中国电机工程学报, 2005, 25(9): 158-163.
GAO H F, JIA Z D, GUAN Z C.Aging Study on Rtv Coating Covered on Insulators and Energized for Many Years[J]. Proceedings of the CSEE, 2005, 25(9): 158-163.
[17] 潘爱川. 环境条件对不同配比硅橡胶材料电晕老化特性的影响研究[D]. 重庆: 重庆理工大学, 2021.
PAN A C.Effect of Environmental Conditions on Corona Aging Characteristics of Silicone Rubber Materials with Different Proportions[D]. Chongqing: Chongqing University of Technology, 2021.
[18] 汤文. 复合绝缘子用伞裙材料研究进展[J]. 合成橡胶工业, 2024, 47(4): 360-363.
TANG W.Research Progress in Umbrella Skirt Materials for Composite Insulators[J]. China Synthetic Rubber Industry, 2024, 47(4): 360-363.
[19] 谭向宇, 周年荣, 钱国超, 等. 外绝缘用高温硫化硅橡胶和液态硅橡胶性能比较[J]. 绝缘材料, 2024, 57(11): 87-92.
TAN X Y, ZHOU N R, QIAN G C, et al.Performance Comparison of High Temperature Vulcanized Silicone Rubber and Liquid Silicone Rubber for External Insulation[J]. Insulating Materials, 2024, 57(11): 87-92.
[20] 方伟镇. 新型含脲基(或氨酯基)有机硅化合物的合成及其对加成型液体硅橡胶耐漏电起痕作用的研究[D]. 广州: 华南理工大学, 2015.
FANG W Z.Synthesis of Novel Organosilicon Compounds Containing Urea Group (or Urethane Group) and Its Effect on the Leakage Resistance of Addition Liquid Silicone Rubber[D]. Guangzhou: South China University of Technology, 2015.
[21] 李成钢, 朱孟周, 刘建军, 等. 110 kV GIS复合套管硅橡胶老化分析与研究[J]. 绝缘材料, 2015, 48(6): 58-61.
LI C G, ZHU M Z, LIU J J, et al.Ageing Analysis and Research of Silicone Rubber Composite Bushing for 110 kV GIS[J]. Insulating Materials, 2015, 48(6): 58-61.
[22] 程宪涛, 吴向荣, 梁桢威, 等. 加成型液体硅橡胶的室温粘接性能研究[J]. 有机硅材料, 2022, 36(2): 33-36.
CHENG X T, WU X R, LIANG Z W, et al.Study on Adhesive Properties of the Additional Liquid Silicone Rubber at Room Temperature[J]. Silicone Material, 2022, 36(2): 33-36.
[23] 张福林, 王黎明. 复合绝缘子外绝缘材质憎水迁移的稳定性[J]. 高压电器, 2002, 38(1): 35-37.
ZHANG F L, WANG L M.The Hydrophobicity Migrating Stability of the External Insulating Material of Composite Insulator[J]. High Voltage Apparatus, 2002, 38(1): 35-37.
[24] LI Y P, ZENG X R, LAI X J, et al.Effect of the Platinum Catalyst Content on the Tracking and Erosion Resistance of Addition-Cure Liquid Silicone Rubber[J]. Polymer Testing, 2017, 63: 92-100.
[25] 王荣华, 王小燕, 李晖, 等. 白炭黑补强氟硅橡胶热空气老化机理研究[J]. 装备环境工程, 2015, 12(2): 10-14.
WANG R H, WANG X Y, LI H, et al.Study on the Hot Air Aging Mechanism of Silica Reinforced Fluorosilicone Rubber[J]. Equipment Environmental Engineering, 2015, 12(2): 10-14.

基金

国网江苏省电力有限公司科技项目(J2024114)

PDF(3448 KB)

Accesses

Citation

Detail

段落导航
相关文章

/