高硅负极锂离子电池容量失效及新能源汽车应用分析

欧梅, 李宁, 牟奕轩, 冷进, 汪齐, 李勇

装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 120-126.

PDF(17170 KB)
PDF(17170 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (6) : 120-126. DOI: 10.7643/issn.1672-9242.2025.06.014
重大工程装备

高硅负极锂离子电池容量失效及新能源汽车应用分析

  • 欧梅1,2, 李宁1,*, 牟奕轩2, 冷进2, 汪齐2, 李勇2
作者信息 +

Capacity Failure of High-silicon Anode Lithium-ion Battery and Its Application in New Energy Vehicles

  • OU Mei1,2, LI Ning1,*, MOU Yixuan2, LENG Jin2, WANG Qi2, LI Yong2
Author information +
文章历史 +

摘要

目的 分析高硅负极锂离子电池容量失效原因,以及未来其在新能源汽车领域应用需重点关注的方向。方法 通过综合运用电化学测试和材料表征技术,深入分析高硅负极锂离子电池在循环过程中容量衰减的机理。结果 电池容量的显著衰减主要归因于负极材料的结构变化。在循环过程中,高硅负极材料经历了持续的体积膨胀和收缩,固体电解质界面膜(SEI)不断增厚。这种SEI膜的增厚不仅加剧了电极与电解液之间的副反应,还引发了硅颗粒晶体结构的破碎和材料的粉化。结论 SEI的恶性增长是新型硅负极材料开发亟待解决的问题,商业化应用的硅负极应该聚焦于提升其结构稳定性和循环寿命的问题,该问题对整车性能具有重要影响。稳定的硅负极材料能够有效延长电池的使用寿命,从而提升电动汽车的续航能力,增强用户体验,进一步推动新能源汽车在市场上的接受度和竞争力,为实现可持续交通提供支持。

Abstract

The work aims to study the causes for capacity failure of lithium-ion batteries with high silicon content anodes and analyze their application in new energy vehicles. Comprehensive electrochemical testing and material characterization techniques were employed to analyze the capacity degradation mechanism of high-silicon anode lithium-ion batteries during cycling. Experimental results indicated that the significant capacity degradation was primarily attributed to structural changes in the anode material. During cycling, the high-silicon anode material underwent continuous volume expansion and contraction, leading to progressive thickening of the solid electrolyte interphase (SEI) film. This SEI film thickening not only intensified the side reactions between the electrode and electrolyte but also triggerred the fracturing of silicon particle crystal structure and material pulverization. The vicious growth of SEI is an urgent problem to be solved in the development of new silicon anode material. The commercial application of silicon anodes should focus on improving its structural stability and cycle life, which has a significant impact on the overall vehicle performance. Stable silicon anode material can effectively extend the battery life, thereby improving the range of electric vehicles, enhancing user experience, further promoting the acceptance and competitiveness of new energy vehicles in the market, and providing support for sustainable transportation.

关键词

锂离子电池 / 高硅负极 / 容量失效 / 结构破坏 / 固体电解质膜 / 新能源汽车

Key words

lithium-ion battery / high-silicon anode / capacity failure / structural damage / solid electrolyte film / new energy vehicles

引用本文

导出引用
欧梅, 李宁, 牟奕轩, 冷进, 汪齐, 李勇. 高硅负极锂离子电池容量失效及新能源汽车应用分析[J]. 装备环境工程. 2025, 22(6): 120-126 https://doi.org/10.7643/issn.1672-9242.2025.06.014
OU Mei, LI Ning, MOU Yixuan, LENG Jin, WANG Qi, LI Yong. Capacity Failure of High-silicon Anode Lithium-ion Battery and Its Application in New Energy Vehicles[J]. Equipment Environmental Engineering. 2025, 22(6): 120-126 https://doi.org/10.7643/issn.1672-9242.2025.06.014
中图分类号: TQ152   

参考文献

[1] TARASCON J M, ARMAND M.Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001, 414(6861): 359-367.
[2] HE H W, SUN F C, ZHANG C G, et al.An Experimental Study on the Charging and Discharging Characteristics of Li-Ion Traction Battery[J]. Transactions of Beijing Institute of Technology, 2002, 22(5): 578-581.
[3] SCROSATI B, HASSOUN J, SUN Y K.Lithium-Ion Batteries. a Look into the Future[J]. Energy & Environmental Science, 2011, 4(9): 3287-3295.
[4] WU H, CUI Y.Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries[J]. Nano Today, 2012, 7(5): 414-429.
[5] LEE J H, YOON C S, HWANG J Y, et al.High- Energy-Density Lithium-Ion Battery Using a Carbon-Nanotube-Si Composite Anode and a Compositionally Graded Li[Ni0.85Co0.05Mn0.10]O2 Cathode[J]. Energy & Environmental Science, 2016, 9(6): 2152-2158.
[6] LIU G L, LI M L, WU N T, et al.Single-Crystalline Particles: An Effective Way to Ameliorate the Intragranular Cracking, Thermal Stability, and Capacity Fading of the LiNi0.6Co0.2Mn0.2O2 Electrodes[J]. Journal of the Electrochemical Society, 2018, 165(13): A3040-A3047.
[7] HAREGEWOIN A M, WOTANGO A S, HWANG B J.Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988.
[8] XU Z X, YANG J, LI H P, et al.Electrolytes for Advanced Lithium Ion Batteries Using Silicon-Based Anodes[J]. Journal of Materials Chemistry A, 2019, 7(16): 9432-9446.
[9] LIU G P, GAO J, XIA M, et al.Strengthening the Interfacial Stability of the Silicon-Based Electrode via an Electrolyte Additive—Allyl Phenyl Sulfone[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38281-38290.
[10] ZHANG H, YANG Y, REN D S, et al.Graphite as Anode Materials: Fundamental Mechanism, Recent Progress and Advances[J]. Energy Storage Materials, 2021, 36: 147-170.
[11] YOON J, JANG S, CHOI S H, et al.Deciphering the Degradation Mechanism of Thick Graphite Anodes in High-Energy-Density Li-Ion Batteries by Electrochemical Impedance Spectroscopy[J]. Journal of Industrial and Engineering Chemistry, 2024, 138: 424-431.
[12] CHEN K X, XU Y H, WU H, et al.Degradation Mechanism and Assessment for Different Cathode Based Commercial Pouch Cells under Different Pressure Boundary Conditions[J]. Energy Storage Materials, 2024, 73: 103793.
[13] LIU N, LU Z D, ZHAO J, et al.A Pomegranate-Inspired Nanoscale Design for Large-Volume-Change Lithium Battery Anodes[J]. Nature Nanotechnology, 2014, 9(3): 187-192.
[14] KO M, CHAE S, MA J, et al.Scalable Synthesis of Silicon-Nanolayer-Embedded Graphite for High-Energy Lithium-Ion Batteries[J]. Nature Energy, 2016, 1(9): 16113.
[15] KAJITA Y, UENO K, DOKKO K, et al.Temperature-Dependent Degradation Mechanisms in SiO/NCA Lithium-Ion Batteries[J]. Energy & Environmental Science, 2018, 11(5): 1256-1265.
[16] MCDOWELL M T, LEE S W, HARRIS J T, et al.In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres[J]. Nano Letters, 2013, 13(2): 758-764.
[17] MIYAZAKI T, FUTAKI S, SUEMORI H, et al.Laminin E8 Fragments Support Efficient Adhesion and Expansion of Dissociated Human Pluripotent Stem Cells[J]. Nature Communications, 2012, 3: 1236.
[18] JUNG H, PARK M, HAN S H, et al.Amorphous Silicon Thin-Film Negative Electrode Prepared by Low Pressure Chemical Vapor Deposition for Lithium-Ion Batteries[J]. Solid State Communications, 2003, 125(7/8): 387-390.
[19] LIU X H, LIU Y, KUSHIMA A, et al.In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures[J]. Advanced Energy Materials, 2012, 2(7): 722-741.
[20] SHI F F, PEI A, VAILIONIS A, et al.Strong Texturing of Lithium Metal in Batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): 12138-12143.
[21] XIAO Y P, LI T L, HAO X Q, et al.Resilient Ion/Electron Dual Conductive Network with Covalent/Hydrogen Bond Cross-Linking Enables Stable and High-Energy-Density Si-C Anodes for Lithium-Ion Batteries[J]. Journal of Materials Chemistry A, 2024, 12(40): 27464-27477.
[22] WANG L, YU J, LI S Y, et al.Recent Advances in Interface Engineering of Silicon Anodes for Enhanced Lithium-Ion Battery Performance[J]. Energy Storage Materials, 2024, 66: 103243.
[23] DI F, WANG Z X, GE C, et al.Hierarchical Pomegranate-Structure Design Enables Stress Management for Volume Release of Si Anode[J]. Journal of Materials Science & Technology, 2023, 157: 1-10.
[24] BAI Z, HE J L, WU J N, et al.A Porous SiOx/C Anode Material Derived from Biomass White Onion for Lithium-Ion Batteries[J]. Ionics, 2022, 28(12): 5475-5487.
[25] Bloomberg NEF.Electric Vehicle Outlook 2023[R]. New York: Bloomberg Finance L P, 2023.
[26] McKinsey & Company. The Future of Mobility: Cost Competitiveness of Electric Vehicles[R]. New York: McKinsey & Company, 2023.

PDF(17170 KB)

Accesses

Citation

Detail

段落导航
相关文章

/