目的 对摩擦机构滑动摩擦力矩进行研究,识别影响摩擦机构力矩的关键因素,为摩擦机构加工、装配、存放和转运过程中的质量控制提供试验依据。方法 以摩擦机构力矩值为指标,通过摩擦力矩自动检测仪、万能拉伸试验机、粗糙度轮廓测量仪、三坐标测量机、维氏硬度机等设备测量和研究摩擦盘粗糙度、结构尺寸和材料性能等因素对摩擦机构力矩值的影响。分别增加摩擦面上铅笔粉末的湿度和温度,将摩擦面混入油烟、灰尘和水汽等单一或混合介质,验证环境因素对摩擦机构力矩的影响。结果 当上、下摩擦盘粗糙度分别稳定在0.3~1.18 μm和0.42~0.90 μm或摩擦面混入灰尘、水汽和油烟等单一介质时,摩擦机构的力矩值无明显变化。当摩擦面混入灰尘、水汽2种介质或混入油烟、灰尘和水汽3种介质时,摩擦机构的力矩值显著增加。结论 综合考虑上述因素对摩擦机构力矩的影响,摩擦面混入灰尘、水汽或混入灰尘、水汽和油烟的混合介质是影响摩擦机构力矩特性的关键因素。因此,为保证产品质量,在实际生产和储存过程中,应严格控制作业环境中的油烟、灰尘和水汽。
Abstract
The work aims to study the sliding friction torque of friction mechanisms, identify the key factors affecting the torque of friction mechanisms from the perspective of design and environments, and provide a test basis for the quality control of friction mechanisms during processing, assembly, storage and transfer. With torque of friction mechanisms as an indicator, the effects of friction disc roughness, structure size and material properties on friction mechanism torque were analyzed by means of automatic friction torque detector, universal tensile tester, roughness and profile measuring instrument, coordinate measuring machine and Vickers hardness tester. The pencil powder on the friction surface was treated with humidity and temperature, and the friction surface was considered to be mixed with a single foreign body or mixed foreign body, such as fume, dust and water vapor, to verify the effect of environmental factors on the torque of the friction mechanism. The roughness of the upper and lower friction discs was stabilized between 0.3-1.18 μm and 0.42-0.90 μm, which had few effects on the friction torque of the guide mechanism. Compared with the normal and special conditions, the effect on the friction torque was very small. When the friction surface was mixed with two media, namely dust and water vapor, or a mixture of oil smoke, dust and water vapor, the torque of the friction mechanism increased significantly. Considering the effects of the above factors on the torque of the friction mechanism, when the friction surface is mixed with dust and water vapor, fume, dust and water vapor mixed foreign matters, it is the key factor affecting the torque characteristics of the friction mechanism. Therefore, in order to ensure product quality, in the actual production and storage process, the fume, dust and water vapor in the operating environment should be strictly controlled.
关键词
摩擦机构 /
力矩 /
粗糙度 /
摩擦面介质 /
环境因素 /
自动检测
Key words
friction mechanism /
torque /
roughness /
foreign matter on friction surface /
environmental factor /
automatic detection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄风华. 末敏弹减速导旋过程动力学特性分析[D]. 南京: 南京理工大学, 2011.
HUANG F H.Dynamic Characteristics Analysis of Terminal-Sensitive Projectile during Deceleration And Guidance[D]. Nanjing: Nanjing University of Science and Technology, 2011.
[2] 华耀栋, 王欣, 胡志鹏, 等. 旋翼巡飞末敏弹动态命中误差仿真研究[J]. 弹箭与制导学报, 2024, 44(4): 18-25.
HUA Y D, WANG X, HU Z P, et al.Research on Simulation for Dynamic Striking Error of Rotorcraft Loitering Terminal Sensitive Projectile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2024, 44(4): 18-25.
[3] CHANG G N, FU W X, ZHAO J M, et al.Overview of Research on Intelligent Swarm Munitions[J]. Defence Technology, 2024, 8: 17.
[4] THEODOULIS S, WERNERT P.Flight Dynamics & Control for Smart Munition: The ISL Contribution[J]. IFAC-PapersOnLine, 2017, 50(1): 15512-15517.
[5] 王程远. 末敏子弹伞弹多刚体动力学模型及运动特性研究[D]. 沈阳: 沈阳理工大学, 2022.
WANG C Y.Study on Multi-Rigid-Body Dynamic Model and Motion Characteristics of Terminal-Sensitive Projectile Parachute[D]. Shenyang: Shenyang Ligong University, 2022.
[6] MA T B, LIU J, WANG Q.Influence of Shaped Charge Structure Parameters on the Formation of Linear Explosively Formed Projectiles[J]. Defence Technology, 2022, 18(10): 1863-1874.
[7] PAUL P, PAUL L.An Overview on the Parachute Recovery Systems with Additive Manufacturing for UAV Safe Landing[J]. Materials Today: Proceedings, 2023, 72: 3158-3162.
[8] DEK C, OVERKAMP J L, TOETER A, et al.A Recovery System for the Key Components of the First Stage of a Heavy Launch Vehicle[J]. Aerospace Science and Technology, 2020, 100: 105778.
[9] PEPERMANS L, BRITTING T, JODEHL J W, et al.Architectures for Parachute Testing[J]. Journal of Space Safety Engineering, 2023, 10(1): 35-44.
[10] 柏苗, 袭祥云, 刘丽冰. 末敏弹射击效能计算模型[J]. 兵工自动化, 2022, 41(11): 7-9.
BAI M, XI X Y, LIU L B.Firing Effectiveness Calculation Model of Terminal Sensitive Projectiles[J]. Ordnance Industry Automation, 2022, 41(11): 7-9.
[11] KAN W X, FENG H Z, LOU W Z, et al.Research on Active/Passive Energy Dissipation Control Method for Thermal Protection of Ammunition Battery[J]. Journal of Energy Storage, 2024, 97: 112913.
[12] 王力, 孙昊, 李引良. 基于翼伞系统的新型末敏弹技术研究[J]. 弹箭与制导学报, 2023, 43(6): 37-41.
WANG L, SUN H, LI Y L.Research of New Terminal Sensitive Projectile Technology Based on Parafoil System[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(6): 37-41.
[13] 王蒙. 大型机械压力机干式离合器及制动器设计要点[J]. 一重技术, 2024(3): 9-11.
WANG M.Main Design Features of Dry Clutch and Brake of Large Mechanical Press[J]. CFHI Technology, 2024(3): 9-11.
[14] 徐侠剑, 张雁, 杨菲, 等. 破碎机中摩擦盘加工精度控制方法研究[J]. 矿山机械, 2022, 50(10): 29-33.
XU X J, ZHANG Y, YANG F, et al.Research on Method of Controlling Machining Precision of Middle Friction Disc of Crusher[J]. Mining & Processing Equipment, 2022, 50(10): 29-33.
[15] 张海聪. 硅基微器件的表面处理及滑动摩擦性能研究[D]. 徐州: 中国矿业大学, 2018.
ZHANG H C.Study on surface Treatment and Sliding Friction Performance of Silicon-Based Micro-Devices[D]. Xuzhou: China University of Mining and Technology, 2018.
[16] DING S Y, ZHANG M X, OU Y D, et al.Study on the Influence of Friction and Wear Properties of High-Speed Rail Brake Materials under Humidity Environment and Temperature Conditions[J]. Materials, 2023, 16(4): 1610.
[17] 张宇. 多因素影响下汽车制动器摩擦片性能状态预测研究[D]. 长春: 长春工业大学, 2023: 15-19.
ZHANG Y.Study on Performance State Prediction of Automobile Brake Friction Plate under the Influence of Multiple Factors[D]. Changchun: Changchun University of Technology, 2023: 15-19.
[18] 刘国钦. 聚醚醚酮纤维增强树脂基摩擦材料仿生设计与性能研究[D]. 长春: 吉林大学, 2023.
LIU G Q.Bionic Design and Performance Study of PEEK Fiber Reinforced Resin-Based Friction Materials[D]. Changchun: Jilin University, 2023.
[19] ZARIFNESHAT M, XIAO L.Beam Adaptation Using Out-of-Band Signals for Robust Millimeter-Wave Communications[J]. Computer Communications, 2023, 212: 116-128.
[20] 马晓冬. 伞降末敏子弹动力学特性研究[D]. 南京: 南京理工大学, 2016.
MA X D.Study on Dynamic Characteristics of Parachute Terminal Sensitive Bullets[D]. Nanjing: Nanjing University of Science and Technology, 2016.
[21] 梁建峰. 末敏子弹扫描平台结构特点研究[D]. 南京: 南京理工大学, 2007.
LIANG J F.Study on Structural Characteristics of Terminal-Sensitive Bullet Scanning Platform[D]. Nanjing: Nanjing University of Science and Technology, 2007.
[22] 周洪淼, 于剑桥, 于勇. 敏捷转弯伞弹系统动力学建模与分岔特性分析[J]. 航空学报, 2024, 45(7): 229012.
ZHOU H M, YU J Q, YU Y.Dynamic Modeling and Bifurcation Analysis of Agile Turn of Parafoil-Missile System[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 229012.
[23] 吴玉厚, 张珈翊, 张丽秀, 等. 旋转滑动摩擦副摩擦噪声影响因素实验研究[J]. 中国机械工程, 2020, 31(23): 2814-2821.
WU Y H, ZHANG J Y, ZHANG L X, et al.Experimental Study on Influence Factors of Friction Noises for Rotating Sliding Friction Pairs[J]. China Mechanical Engineering, 2020, 31(23): 2814-2821.
[24] 邱小艳, 薄玉成. 基于有限元的滑动摩擦副温度影响因素分析[J]. 机械工程与自动化, 2007(6): 48-49.
QIU X Y, BO Y C.Analysis of the Factors Affecting the Temperature of Sliding Friction Pairs[J]. Mechanical Engineering & Automation, 2007(6): 48-49.
[25] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 第5版. 北京: 高等教育出版社, 2019.
SHENG Z, XIE S Q, PAN C Y.Probability and Mathematical Statistics[M]. 5th ed. Beijing: Higher Education Press, 2019.