高强铝合金模拟极寒大气环境下加速腐蚀机理研究

白玉洁, 孟迪, 李新义, 吴昊, 田会云, 崔中雨

装备环境工程 ›› 2025, Vol. 22 ›› Issue (8) : 1-13.

PDF(33986 KB)
PDF(33986 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (8) : 1-13. DOI: 10.7643/issn.1672-9242.2025.08.001
专题——复杂环境轻武器应用与协同评估技术

高强铝合金模拟极寒大气环境下加速腐蚀机理研究

  • 白玉洁1, 孟迪1, 李新义2,*, 吴昊3, 田会云1,*, 崔中雨1
作者信息 +

Study on Accelerated Corrosion Mechanism of High-strength Aluminum Alloy under Simulated Extremely Cold Atmospheric Environment

  • BAI Yujie1, MENG Di1, LI Xinyi2,*, WU Hao3, TIAN Huiyun1,*, CUI Zhongyu1
Author information +
文章历史 +

摘要

目的 进一步验证高强铝合金在极寒环境中加速试验谱的合理性,并深入探讨其腐蚀机理,进行系统研究。方法 基于此前研究的高强铝合金加速试验环境谱,开展长周期腐蚀试验。采用腐蚀质量损失速率测试、腐蚀产物表面与截面形貌观察、腐蚀产物成分分析以及三维点蚀参数分析等手段,对长周期加速腐蚀试验后高强铝合金的腐蚀机理进行综合分析。结果 2024和7075铝合金在加速腐蚀5个周期后,质量损失速率分别为16、9 g/(m·a),腐蚀产物主要为AlOOH和Al2O3。相较于7075铝合金,2024铝合金明显多出了红色腐蚀产物,其较高的铜含量可能是产生红色腐蚀产物的关键因素之一。结论 冰层下的薄液膜为铝合金腐蚀提供了必要的湿润介质,极寒环境中的冻融循环导致冰层下氯离子富集,进而促进点蚀的萌生与扩展。

Abstract

The work aims to further verify the reasonableness of the accelerated test spectrum of high-strength aluminum alloy in extremely cold environment, and to explore its corrosion mechanism in depth for systematic research. Based on the previously studied accelerated test environment spectrum of high-strength aluminum alloy, a long-cycle corrosion test was carried out. The corrosion mechanism of high-strength aluminum alloys after the long-cycle accelerated corrosion test was comprehensively analyzed by means of corrosion mass loss rate test, surface and cross-section morphological observation of corrosion products, corrosion product composition analysis, and three-dimensional pitting parameter analysis. The mass loss rates of 2024 and 7075 aluminum alloys after five cycles of accelerated corrosion were 16 g·m-2/a and 9 g·m-2/a, respectively, and the corrosion products were mainly AlOOH and Al2O3. Compared with 7075 aluminum alloy, 2024 aluminum alloy significantly has more red corrosion products. Its higher copper content may be one of the key factors for the formation of red corrosion products The thin liquid film under the ice layer provides the necessary wetting medium for the corrosion of aluminum alloys. Freeze-thaw cycles in the extremely cold environment lead to the enrichment of chloride ions under the ice layer, which in turn promotes the emergence and expansion of pitting corrosion.

关键词

高强铝合金 / 极寒环境 / 加速试验 / 大气腐蚀 / 点蚀 / 腐蚀机理

Key words

high-strength aluminum alloy / extreme cold environment / accelerated test / atmospheric corrosion / pitting / corrosion mechanism

引用本文

导出引用
白玉洁, 孟迪, 李新义, 吴昊, 田会云, 崔中雨. 高强铝合金模拟极寒大气环境下加速腐蚀机理研究[J]. 装备环境工程. 2025, 22(8): 1-13 https://doi.org/10.7643/issn.1672-9242.2025.08.001
BAI Yujie, MENG Di, LI Xinyi, WU Hao, TIAN Huiyun, CUI Zhongyu. Study on Accelerated Corrosion Mechanism of High-strength Aluminum Alloy under Simulated Extremely Cold Atmospheric Environment[J]. Equipment Environmental Engineering. 2025, 22(8): 1-13 https://doi.org/10.7643/issn.1672-9242.2025.08.001
中图分类号: TG174.3   

参考文献

[1] 崔腾飞, 吴建国, 成洁楠, 等. 直升机腐蚀原因分析及全寿命周期防护技术[J]. 装备环境工程, 2024, 21(5): 66-73.
CUI T F, WU J G, CHENG J N, et al.Corrosion Causes and Full Life Cycle Protection Technology of Helicopters[J]. Equipment Environmental Engineering, 2024, 21(5): 66-73.
[2] 叶其斌, 刘振宇, 王国栋. 极地船舶用低温钢发展[C]// 第十届中国钢铁年会暨第六届宝钢学术年会论文集. 北京: 冶金工业出版社, 2015.
YE Q B, LIU Z Y, WANG G D.Cryogenic Steel Development for Polar Ships[C]// Proceedings of the 10th China Iron and Steel Annual Conference and the 6th Baosteel Academic Annual Conference. Beijing: Metallurgical Industry Press, 2015.
[3] MILLER W S, ZHUANG L, BOTTEMA J, et al.Recent Development in Aluminium Alloys for the Automotive Industry[J]. Materials Science and Engineering: A, 2000, 280(1): 37-49.
[4] LI N, DONG C F, MAN C, et al.Insight into the Localized Strain Effect on Micro-Galvanic Corrosion Behavior in AA7075-T6 Aluminum Alloy[J]. Corrosion Science, 2021, 180: 109174.
[5] WU H, WANG L W, WANG Y X, et al.Comparative Study of the Corrosion Behavior of Base Metal and Welded Joint of Ti-6Al-3Nb-2Zr-1Mo Alloy in the Acidic Chloride Environment[J]. Corrosion Science, 2025, 244: 112649.
[6] WU H, WANG M T, BIAN G X, et al.Comparative Study of Stress Corrosion Cracking and Corrosion-Induced Mechanical Property Degradation of 7050-T7451 Aluminum Alloy in Chloride Solution Containing Bisulfite[J]. Engineering Failure Analysis, 2025, 167: 109054.
[7] DURSUN T, SOUTIS C.Recent Developments in Advanced Aircraft Aluminium Alloys[J]. Materials & Design (1980-2015), 2014, 56: 862-871.
[8] ZHANG J L, SONG B, WEI Q S, et al.A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270-284.
[9] LI C H, PENG C, LI X H, et al.Initial Corrosion Behavior of EH36 Marine Steel in Simulated Polar Marine Environment[J]. International Journal of Electrochemical Science, 2022, 17(12): 22126.
[10] FU T, SONG G L, ZHENG D J.Corrosion Damage in Frozen 3.5 WT.% NaCl Solution[J]. Materials and Corrosion, 2021, 72(8): 1396-1409.
[11] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
CUI Z Y, GE F, WANG X.Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(3): 403-409.
[12] 郝美丽, 曹学军, 封先河, 等. 铝合金室内加速腐蚀与大气暴露腐蚀的相关性[J]. 兵器材料科学与工程, 2006, 29(5): 28-31.
HAO M L, CAO X J, FENG X H, et al.Investigation on Interrelation of Indoor Accelerated Corrosion Testing and Atmospheric Exposure Testing of LY12 Alloy[J]. Ordnance Material Science and Engineering, 2006, 29(5): 28-31.
[13] 赵朋飞, 郭文营, 陶阳, 等. 含镀层合金钢循环盐雾加速腐蚀行为与机理研究[J]. 表面技术, 2022, 51(4): 236-246.
ZHAO P F, GUO W Y, TAO Y, et al.Accelerated Corrosion Behavior and Mechanism of Coated Alloy Ateel by Cyclic Salt-Spray Test[J]. Surface Technology, 2022, 51(4): 236-246.
[14] 马腾, 王振尧, 韩薇. 铝和铝合金的大气腐蚀[J]. 腐蚀科学与防护技术, 2004, 16(3): 155-161.
MA T, WANG Z Y, HAN W.A Review of Atmospheric Corrosion of Aluminum and Aluminum Alloys[J]. Corrosion Science and Technology Protection, 2004, 16(3): 155-161.
[15] 孙晓光, 陈志坚, 王睿, 等. 循环盐雾环境中碳纤维复合材料-6082铝合金螺栓连接结构中铝合金的腐蚀行为[J]. 腐蚀与防护, 2024, 45(4): 26-32.
SUN X G, CHEN Z J, WANG R, et al.Corrosion Behavior of Al Alloy of Carbon-Fiber-Composite and 6082 Aluminum Alloy Bolt Connection Structure in Circulating Salt Spray Environment[J]. Corrosion & Protection, 2024, 45(4): 26-32.
[16] 汪凤琴, 苏艳, 钟勇, 等. 7B04铝合金及其螺接件的微观腐蚀机制及耐久性研究[J]. 表面技术, 2023, 52(10): 181-193.
WANG F Q, SU Y, ZHONG Y, et al.Microscopic Corrosion Mechanism and Durability of 7B04 Aluminum Alloy and Its Screw Joint[J]. Surface Technology, 2023, 52(10): 181-193.
[17] 冷文俊, 崔中雨, 王昕, 等. 低合金高强钢极地环境加速腐蚀试验谱编制与研究[J]. 材料开发与应用, 2023, 38(3): 31-36.
LENG W J, CUI Z Y, WANG X, et al.Preparation and Study of Accelerated Corrosion Test Spectrum of Low Alloy High Strength Steel in Polar Environment[J]. Development and Application of Materials, 2023, 38(3): 31-36.
[18] 崔腾飞, 成洁楠, 宋健, 等. 高强铝合金在极寒环境下的腐蚀行为与室内外相关性研究[J]. 装备环境工程, 2025, 22(1): 61-68.
CUI T F, CHENG J N, SONG J, et al.Accelerated Corrosion Behavior of High Strength Aluminum Alloy in Simulated Polar Atmosphere[J]. Equipment Environmental Engineering, 2025, 22(1): 61-68.
[19] JI Y Y, HU Q, XIA D H, et al.Corrosion Susceptibility of Passive Films on 1060, 2024, and 5083 Aluminum Alloys: Experimental Study and First-Principles Calculations[J]. Journal of the Electrochemical Society, 2023, 170(4): 041505.
[20] LIAO J S, HOTTA M.Atmospheric Corrosion Behavior of Field-Exposed Magnesium Alloys: Influences of Chemical Composition and Microstructure[J]. Corrosion Science, 2015, 100: 353-364.
[21] LIAO J S, HOTTA M, MOTODA S I, et al.Atmospheric Corrosion of Two Field-Exposed AZ31B Magnesium Alloys with Different Grain Size[J]. Corrosion Science, 2013, 71: 53-61.
[22] 夏大海, 计元元, 毛英畅, 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
XIA D H, JI Y Y, MAO Y C, et al.Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. Acta Metallurgica Sinica, 2023, 59(2): 297-308.
[23] XUE W, WANG Y X, WU S, et al.Influence of Impurity Content on Corrosion Behavior of Al-Zn-Mg-Cu Alloys in a Tropical Marine Atmospheric Environment[J]. Corrosion Science, 2024, 237: 112319.
[24] LIU S Y, LI Z P, GAO J S, et al.Enhancing Corrosion Resistance of AZ31B Magnesium Alloy Substrate in 3.5 % NaCl Solution with Al-Si Coating Prepared by Cold Metal Transfer-Based Wire Arc Additive Manufacturing[J]. International Journal of Electrochemical Science, 2024, 19(9): 100763.
[25] SHIBATA T, TAKEYAMA T.Stochastic Theory of Pitting Corrosion[J]. Corrosion, 1977, 33(7): 243-251.
[26] BLANC C, FREULON A, LAFONT M C, et al.Modelling the Corrosion Behaviour of Al2CuMg Coarse Particles in Copper-Rich Aluminium Alloys[J]. Corrosion Science, 2006, 48(11): 3838-3851.
[27] BUCHHEIT R G.A Compilation of Corrosion Potentials Reported for Intermetallic Phases in Aluminum Alloys[J]. Journal of the Electrochemical Society, 142(11): 3994-3996.
[28] BUCHHEIT R G, MONTES L P, MARTINEZ M A, et al.The Electrochemical Characteristics of Bulk-Synthesized Al2CuMg[J]. Journal of the Electrochemical Society, 146(12): 4424-4428.
[29] JI Y Y, WANG M Y, QIN W M, et al.Near-Atomic-Scale Study of the Oxide Films on the Grain Boundaries of Al-Mg Alloys at the Initial Stage of Corrosion: Experimental Investigations and DFT Calculations[J]. Corrosion Science, 2025, 244: 112640.
[30] LIU Z, WANG J R, QIN Z B, et al.A Mechanistic Study on Stress Corrosion Cracking of Sensitized AA5083 in a Simulated Water Level Fluctuation Zone: Combined Impedance Analysis and Tensile Tests[J]. Corrosion Science, 2025, 245: 112701.

基金

国家自然科学基金面上项目(52371080)

PDF(33986 KB)

Accesses

Citation

Detail

段落导航
相关文章

/