目的 研究直升机橡胶和密封剂材料在高原高寒环境下的性能变化规律。方法 通过研究拉萨、漠河地区的环境因素,结合直升机结构特点,分析温度、湿度等因素的作用方式,确定低温、湿热、浸泡谱块组成,编制适用于直升机内部结构的高原高寒环境加速试验环境谱。选择5860橡胶和HM306密封剂,在拉萨和漠河分别进行1 a的自然暴露试验。采用加速试验环境谱,进行5周期的加速环境试验,并对试验件的表面形貌、硬度、拉伸强度、扯断伸长率、T形剥离强度进行测试。结果 5860和HM306经过自然环境暴露试验后,没有鼓泡、分层、粉化等老化现象,表面形貌基本没有变化,硬度、拉伸强度、扯断伸长率基本保持不变。经过5周期的加速环境试验后,5860和HM306的各项性能基本保持不变,或略有降低,但是降低的程度不大,表面形貌也基本没有变化。自然环境试验和实验室加速试验结果一致,所编制的加速试验环境谱与实际环境有良好的一致性。结论 5860橡胶和HM306在高原和高寒环境具有良好的环境适应性,可满足直升机的使用需求。
Abstract
The work aims to study the performance changes of helicopter rubber and sealant materials in high-altitude and cold environments. By studying the environmental factors in Lhasa and Mohe areas, combined with the structural characteristics of helicopters, the effects of temperature, humidity and other factors were analyzed. The composition of low-temperature, humid and hot, and immersion spectrum blocks was determined, and a high-altitude and cold environment accelerated testing environment spectrum suitable for the internal structure of helicopters was developed. 5860 rubber and HM306 sealant were selected to conduct a one-year natural exposure test in Lhasa and Mohe respectively; An accelerated environment test was conducted for 5 cycles using an accelerated testing environment spectrum. After the experiment, the surface morphology, hardness, tensile strength, elongation at break, and T-shaped peel strength of the test specimens were tested. After natural environment exposure tests, there were no aging phenomena such as bubbling, delamination, or powdering observed in 5860 and HM306. The surface morphology remained basically unchanged, and the hardness, tensile strength, and elongation at break remained basically unchanged; After 5 cycles of accelerated environmental testing, the performance of 5860 and HM306 remained basically unchanged or slightly decreased, but the degree of decrease was not significant, and the surface morphology also remained basically unchanged. The results of natural environment testing and laboratory accelerated testing were consistent, and the prepared accelerated testing environment spectrum had good consistency with the actual environment. In conclusion, 5860 rubber and HM306 have good environmental adaptability in high-altitude and cold environments, which can meet the needs of helicopter use.
关键词
直升机 /
非金属材料 /
高原高寒 /
加速试验环境谱 /
腐蚀 /
老化
Key words
helicopter /
non-metallic materials /
high-altitude and cold /
accelerated testing environment spectrum /
corrosion /
aging
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 崔腾飞, 吴建国, 成洁楠, 等. 直升机腐蚀原因分析及全寿命周期防护技术[J]. 装备环境工程, 2024, 21(5): 66-73.
CUI T F, WU J G, CHENG J N, et al.Cause Analysis of Helicopter Corrosion and Life Cycle Protection Technology[J]. Equipment Environmental Engineering, 2024, 21(5): 66-73.
[2] 刘艳, 陈经纬. C919民用飞机飞控系统鉴定试验环境设计[J]. 航空工程进展, 2021, 12(6): 153-160.
LIU Y, CHEN J W.Environment Design of Qualification Test of C919 Civil Aircraft Flight Control System[J]. Advances in Aeronautical Science and Engineering, 2021, 12(6): 153-160.
[3] 祝耀昌, 彭丽, 常海娟. 航空产品环境鉴定试验有效性评价方法探讨[J]. 航天器环境工程, 2013, 30(4): 346-351.
ZHU Y C, PENG L, CHANG H J.The Validity Evaluation Method in Environmental Evaluation Tests for Aerial Product Set[J]. Spacecraft Environment Engineering, 2013, 30(4): 346-351.
[4] 吴文涛, 艾剑波, 郭俊贤. 某旋翼液压阻尼器动密封故障分析与处理[J]. 直升机技术, 2013(4): 37-40.
WU W T, AI J B, GUO J X.Analysis and Solution of Rotor System Hydraulic Lead-Lag Damper Dynamic Sealing Problem[J]. Helicopter Technique, 2013(4): 37-40.
[5] 张彩先, 蒋晓彦, 孙艳, 等. 直升机东南沿海地区环境适应性研究[J]. 装备环境工程, 2009, 6(1): 66-70.
ZHANG C X, JIANG X Y, SUN Y, et al.Research on Helicopter Environmental Worthiness in Southeast Coastal Areas[J]. Equipment Environmental Engineering, 2009, 6(1): 66-70.
[6] 温育明, 张晓娟, 何泳. 飞机液压系统低温研究[J]. 机床与液压, 2018, 46(2): 91-93.
WEN Y M, ZHANG X J, HE Y.Research on Low Temperature of Aircraft Hydraulic System[J]. Machine Tool & Hydraulics, 2018, 46(2): 91-93.
[7] 骆晨, 李明, 孙志华, 等. 海洋大气环境中飞机的环境损伤和环境适应性[J]. 航空材料学报, 2016, 36(3): 101-107.
LUO C, LI M, SUN Z H, et al.Environmental Damage and Environmental Adaptability of the Aircraft in Marine Atmosphere[J]. Journal of Aeronautical Materials, 2016, 36(3): 101-107.
[8] 艾剑波, 吴建国, 崔腾飞, 等. 直升机极寒环境适应性试飞的挑战与思考[J]. 装备环境工程, 2025, 22(2): 31-39.
AI J B, WU J G, CUI T F, et al.Challenges and Reflections on Helicopters Test Flights in Extremely Cold Environments[J]. Equipment Environmental Engineering, 2025, 22(2): 31-39.
[9] 谭剑锋, 闫羽泽, 张卫国, 等. 沙盲环境直升机桨叶磨损分析方法[J]. 航空学报, 2025, 46(9): 286-299.
TAN J F, YAN Y Z, ZHANG W G, et al.Analysis Method of Helicopter Blade Erosion in Brownout Condition[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 286-299.
[10] 柳文林, 穆志韬, 段成美. 现役直升机结构腐蚀原因及控制[J]. 腐蚀科学与防护技术, 2005, 17(5): 358-359.
LIU W L, MU Z T, DUAN C M.Corrosion Control and Causation Analysis for Helicopter Structures in Service[J]. Corrosion Science and Protection Technology, 2005, 17(5): 358-359.
[11] 张福泽. 金属涂层的日历寿命计算公式和试验方法[J]. 航空学报, 2016, 37(2): 390-396.
ZHANG F Z.Calculation Formula and Test Method of Calendar Life of Metallic Coating[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 390-396.
[12] PAO P S, GILL S J, FENG C R.On Fatigue Crack Initiation from Corrosion Pits in 7075-T7351 Aluminum Alloy[J]. Scripta Materialia, 2000, 43(5): 391-396.
[13] 张福泽. 三维等损伤环境谱的编制原理和方法[J]. 航空学报, 2016, 37(2): 381-389.
ZHANG F Z.Drawing up Principle and Method of 3D Damage Environment Spectrum of Metallic Calendar Life[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 381-389.
[14] 刘文珽, 李玉海, 王向明, 等. 飞机结构日历寿命体系评定技术[M]. 北京: 航空工业出版社, 2004.
LIU W T, LI Y H, WANG X M, et al.Evaluation Technology of Calendar Life System of Aircraft Structure[M]. Beijing: Aviation Industry Press, 2004.
[15] 刘文珽, 李玉海, 陈群志, 等. 飞机结构腐蚀部位涂层加速试验环境谱研究[J]. 北京航空航天大学学报, 2002, 28(1): 109-112.
LIU W T, LI Y H, CHEN Q Z, et al.Accelerated Corrosion Environmental Spectrums for Testing Surface Coatings of Critical Areas of Flight Aircraft Structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1): 109-112.
[16] 陈跃良, 陈亮, 卞贵学, 等. 先进舰载战斗机腐蚀防护控制与日历寿命设计[J]. 航空学报, 2021, 42(8): 525786.
CHEN Y L, CHEN L, BIAN G X, et al.Corrosion Protection Control and Calendar Life Design of Advanced Carrier-Based Aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525786.
[17] 肖敏, 赵全成, 杨华明, 等. 硅橡胶自然环境加速试验方法与自然环境试验方法等效性研究[J]. 装备环境工程, 2020, 17(11): 71-78.
XIAO M, ZHAO Q C, YANG H M, et al.Equivalence between Natural Environmental Accelerated Test Methods and Natural Environmental Test Methods of Silicone Rubber[J]. Equipment Environmental Engineering, 2020, 17(11): 71-78.
[18] 刘明, 高蒙, 张兴华, 等. 橡胶材料自然环境老化失效研究进展[J]. 环境技术, 2015, 33(6): 31-34.
LIU M, GAO M, ZHANG X H, et al.Progress of Study on Rubbers Environmental Aging[J]. Environmental Technology, 2015, 33(6): 31-34.
[19] 张国彬, 牟亚军, 刘国良, 等. 硅橡胶长期贮存老化机理分析[J]. 装甲兵工程学院学报, 2016(1): 104-110.
ZHANG G B, MOU Y J, LIU G L, et al.Aging Mechanism Analysis of Silicone Rubber during Long Term Storage[J]. Journal of Academy of Armored Force Engineering, 2016(1): 104-110.
[20] 刘轶平, 余金桂, 章桥新. 橡胶的老化与寿命评估[J/OL]. 材料导报, 2025: 1-25. (2025-04-29). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20250428003&dbname=CJFD&dbcode=CJFQ.
LIU Y P, YU J G, ZHANG Q X. Aging and Life Evaluation of Rubber[J/OL]. China Industrial Economics, 2025: 1-25. (2025-04-29). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20250428003&dbname=CJFD&dbcode=CJFQ.
[21] 高蒙, 孙志华, 刘明, 等. 直升机用橡胶密封产品环境试验技术研究进展[J]. 装备环境工程, 2020, 17(5): 18-24.
GAO M, SUN Z H, LIU M, et al.Research Progress on Environmental Test Technology of Rubber Sealing Products for Helicopter[J]. Equipment Environmental Engineering, 2020, 17(5): 18-24.
[22] 陈明伟, 高前, 李孔标, 等. 氟橡胶低温脆化性能研究[J]. 橡胶工业, 2019, 66(6): 435-439.
CHEN M W, GAO Q, LI K B, et al.Study on Low Temperature Brittleness Property of FKM[J]. China Rubber Industry, 2019, 66(6): 435-439.
[23] 王荣华, 李晖, 孙岩, 等. 橡胶材料加速老化研究现状及发展趋势[J]. 装备环境工程, 2013, 10(4): 66-70.
WANG R H, LI H, SUN Y, et al.Research Status and Development Trend of Accelerated Aging of Rubber Materials[J]. Equipment Environmental Engineering, 2013, 10(4): 66-70.
[24] 黄艳华, 石扬, 薛磊, 等. 航空硅橡胶材料研究及应用进展[J]. 航空材料学报, 2016, 36(3): 79-91.
HUANG Y H, SHI Y, XUE L, et al.Research and Application Progress of Silicone Rubber Materials in Aviation[J]. Journal of Aeronautical Materials, 2016, 36(3): 79-91.