为探索多维数据分析与人工智能技术在弹药试验中的应用前景,对这2项技术未来如何优化弹药试验流程、提升试验效率和设计精度进行了详细分析。首先,回顾了弹药试验中的数据采集技术,介绍了如何利用多维数据分析方法提取关键信息。接着,重点探讨了人工智能在数据处理、模型构建及性能评估中的应用,提出了多维数据分析与人工智能技术的协同工作模式,强调了数据融合、异常检测、特征选择等方法在弹药试验中的重要性。此外,进一步分析了其在辅助弹药设计优化中的潜力,阐述了如何通过人工智能技术实现数据驱动的设计空间探索与高效的仿真加速。然后,探讨了在实际应用中面临的数据质量与稀缺性、高维数据处理与融合、模型可解释性与可靠性和模型适应性问题。最后,展望未来研究方向,提出了由多维数据分析与人工智能技术催生的弹药试验智能化平台、实时数据反馈系统和虚拟仿真等应用前景。随着技术的进步,多维数据分析和人工智能技术将在弹药试验智能化发展过程中发挥越来越重要的作用,为军事装备的研发提供了更加精准、高效和低成本的技术支持。
Abstract
The work aims to explore the application prospects of multidimensional data analysis and artificial intelligence (AI) in ammunition testing, and conduct a comprehensive analysis on ways to use these technologies to optimize test procedures, enhance testing efficiency, and improve design precision. First, it reviews current data acquisition techniques in ammunition testing and introduces methods for extracting key insights using multidimensional data analysis. Then, it discusses the application of AI in data processing, model development, and performance evaluation and proposes a collaborative framework integrating multidimensional data analysis and AI, emphasizing the roles of data fusion, anomaly detection, and feature selection in testing processes. Furthermore, the potential of AI to support ammunition design optimization is explored, including its capability to enable data-driven design space exploration and accelerate simulation processes efficiently. The study also discusses practical challenges, such as data quality and scarcity, high-dimensional data integration, model interpretability and reliability, and adaptability to complex scenarios. Looking ahead, the paper envisions future research directions, including the development of intelligent testing platforms, real-time data feedback systems, and virtual simulation environments empowered by multidimensional data and AI technologies. As these technologies continue to advance, they are expected to play an increasingly pivotal role in the intelligent evolution of ammunition testing, offering more precise, efficient, and cost-effective support for military equipment development.
关键词
数据分析 /
人工智能 /
弹药试验 /
数据驱动:弹药设计 /
毁伤评估
Key words
data analysis /
artificial intelligence /
ammunition testing /
data-driven /
ammunition design /
damage assessment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 晁芳群, 杜剑英, 穆高超, 等. 智能化弹药靶场试验测试现状及发展方向[J]. 火力与指挥控制, 2014, 39(8): 181-184.
CHAO F Q, DU J Y, MU G C, et al.Present Situation and Development Trend of Intelligent Ammunition Test Measuring in Range[J]. Fire Control & Command Control, 2014, 39(8): 181-184.
[2] 张镭. 弹药试验风险因素分析[J]. 四川兵工学报, 2013, 34(8): 51-55.
ZHANG L.Risk Factor Analysis for Conventional Ordnance Ammunition Test[J]. Journal of Sichuan Ordnance, 2013, 34(8): 51-55.
[3] 娄文忠, 何博, 袁勇, 等. 基于反目标法的引信复杂终点弹道等效模拟试验系统[J]. 兵工学报, 2024, 45(12): 4554-4564.
LOU W Z, HE B, YUAN Y, et al.An Equivalent Simulation Test System for Complex Terminal Ballistics of Fuze Based on Counter Target Method[J]. Acta Armamentarii, 2024, 45(12): 4554-4564.
[4] 王小峰, 陶钢, 丁贵鹏, 等. 30 mm小口径炮弹发射时炸药装药应变率及过载安全性分析[J]. 兵器装备工程学报, 2017, 38(10): 9-14.
WANG X F, TAO G, DING G P, et al.Analysis of Strain Rate and Over-Loading Safety of Explosive Charge when 30 mm Small-Caliber Shell Are Fired[J]. Journal of Ordnance Equipment Engineering, 2017, 38(10): 9-14.
[5] 刘国亮, 焦纲领, 马营, 等. 弹药安全性试验技术研究进展[J]. 现代防御技术, 2023, 51(1): 107-118.
LIU G L, JIAO G L, MA Y, et al.Study on Safety Test Method of Ammunition[J]. Modern Defence Technology, 2023, 51(1): 107-118.
[6] 杨秋学, 高欣宝. 炮射导弹飞行可靠性试验法研究[J]. 军械工程学院学报, 2001, 13(1): 46-49.
YANG Q X, GAO X B.Flight Reliability Test Method Study of Cannon Launched Guided Projectile[J]. Journal of Ordnance Engineering College, 2001, 13(1): 46-49.
[7] LECUN Y, BENGIO Y, HINTON G.Deep Learning[J]. Nature, 2015, 521(7553): 436-444.
[8] JORDAN M I, MITCHELL T M.Machine Learning: Trends, Perspectives, and Prospects[J]. Science, 2015, 349(6245): 255-260.
[9] 李军, 李玉玺, 刘馨心, 等. 智能弹药发射技术现状与发展建议[J]. 前瞻科技, 2022, 1(4): 125-134.
LI J, LI Y X, LIU X X, et al.Current Situation and Development Suggestions on Intelligent Ammunition Launching Technology[J]. Science and Technology Foresight, 2022, 1(4): 125-134.
[10] 朱继宏, 肖和业, 张永励, 等. 智能化弹药结构技术进展及发展建议[J]. 前瞻科技, 2022, 1(4): 55-68.
ZHU J H, XIAO H Y, ZHANG Y L, et al.Advances and Suggestions on Intelligent Ammunition Structural Technology[J]. Science and Technology Foresight, 2022, 1(4): 55-68.
[11] 刘彦, 柳明, 吕中杰, 等. 基于科学知识图谱的弹药毁伤评估技术发展现状与趋势研究[J]. 北京理工大学学报, 2024, 44(3): 219-230.
LIU Y, LIU M, LYU Z J, et al.Research on the Development Status and Trend of Ammunition Damage Assessment Technology Based on Mapping Knowledge Domains[J]. Transactions of Beijing Institute of Technology, 2024, 44(3): 219-230.
[12] LUO R C, KAY M G.Multisensor Integration and Fusion in Intelligent Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 901-931.
[13] 顾廷炜, 汤明宏, 孙晓冬. 智能传感器技术应用现状与发展趋势综述[J]. 物联网技术, 2025, 15(1): 59-63.
GU T W, TANG M H, SUN X D.Summary of Application Status and Development Trend of Intelligent Sensor Technology[J]. Internet of Things Technologies, 2025, 15(1): 59-63.
[14] 王臻, 刘东, 徐重酉, 等. 新型电力系统多源异构数据融合技术研究现状及展望[J]. 中国电力, 2023, 56(4): 1-15.
WANG Z, LIU D, XU C Y, et al.Status Quo and Prospect of Multi-Source Heterogeneous Data Fusion Technology for New Power System[J]. Electric Power, 2023, 56(4): 1-15.
[15] WANG L Q, QIAN B W, ZHANG C Y, et al.A Review of Artificial Intelligence Techniques in Blast Field Shockwave Pressure Testing[J]. Journal of Measurements in Engineering, 2025, 13(2): 45-58.
[16] 刘颖茜, 姚小明, 李碧波. 高速摄像在某强冲击试验中的试验弹测速应用研究[J]. 机械科学与技术, 2024, 43(5): 904-910.
LIU Y X, YAO X M, LI B B.Research on Velocity Measurement of Projectiles Using High-Speed Photography in Strong Impact Test[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 904-910.
[17] 辛朝军, 姚静波. 无线传感器网络技术的军事应用[J]. 单片机与嵌入式系统应用, 2010, 10(6): 12-15.
XIN C J, YAO J B.Military Application of Wireless Sensor Networks Technology[J]. Microcontrollers & Embedded Systems, 2010, 10(6): 12-15.
[18] LIU H B, SHI X M.Damage Effectiveness Calculation of Hitting Targets with Ammunition Based on Bayesian Multinomial Distribution[J]. Symmetry, 2022, 14(5): 892.
[19] WANG T X, JING Z C, ZHANG S P, et al.Utilizing Principal Component Analysis and Hierarchical Clustering to Develop Driving Cycles: A Case Study in Zhenjiang[J]. Sustainability, 2023, 15(6): 4845.
[20] GÜRTLER M, HIBBELN M, GÖTZE M. Forecasting Accuracy of Machine Learning and Linear Regression in CAT Bond Markets[J]. Business Research, 2023, 16(1): 123-140.
[21] 饶彬, 屈龙海, 肖顺平, 等. 基于时间序列分析的弹道目标进动周期提取[J]. 电波科学学报, 2011, 26(2): 291-296.
RAO B, QU L H, XIAO S P, et al.Precession Period Extraction of Ballistic Targets Based on Time Series Analysis[J]. Chinese Journal of Radio Science, 2011, 26(2): 291-296.
[22] YE X Y, SONG F J, ZHANG Z Y, et al.A Review of Small UAV Navigation System Based on Multisource Sensor Fusion[J]. IEEE Sensors Journal, 2023, 23(17): 18926-18948.
[23] GHAHREMANNEZHAD H, LIU C J, SHI H. Ammunition Component Classification Using Deep Learning[EB/OL]. (2022-08-26) [2025-07-21]. https://arxiv.org/abs/2208.12863.
[24] 陈雷雨, 周志杰, 唐帅文, 等. 融合多元信息的武器装备性能评估方法[J]. 系统工程与电子技术, 2020, 42(7): 1527-1533.
CHEN L Y, ZHOU Z J, TANG S W, et al.Weapon Equipment Performance Evaluation Method with Multi-Information Fusion[J]. Systems Engineering and Electronics, 2020, 42(7): 1527-1533.
[25] 陈佳希, 王宇浩, 程辰, 等. 导弹发射飞行可靠度评估方法研究[J]. 现代防御技术, 2024, 52(3): 137-142.
CHEN J X, WANG Y H, CHENG C, et al.Research on the Evaluation Method of Launch Flight Reliability of Missile[J]. Modern Defence Technology, 2024, 52(3): 137-142.
[26] LIU Y H, ZHOU Y M, HU C F, et al.A Review of Multisensor Information Fusion Technology[C]// 2018 37th Chinese Control Conference (CCC). Wuhan: IEEE, 2018.
[27] BAEZA V M, PARADA R, SALOR L C, et al. AI-Driven Tactical Communications and Networking for Defense: A Survey and Emerging Trends[EB/OL]. (2025-04-07) [2025-07-21]. https://arxiv.org/abs/2504.05071.
[28] 唐爽, 张灵箫, 赵俊峰, 等. 面向多源数据的可扩展主题建模分析框架[J]. 计算机科学与探索, 2019, 13(5): 742-752.
TANG S, ZHANG L X, ZHAO J F, et al.Extensible Topic Modeling and Analysis Framework for Multisource Data[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 742-752.
[29] 王草山, 单宁, 蒋贤沛. 基于BP神经网络与遗传算法的强光爆震弹装药优化研究[J]. 军械工程学院学报, 2016, 28(4): 27-31.
WANG C S, SHAN N, JIANG X P.Research on Composition Optimization of Main Charge of Flash High-ExplosiveAmmunition Based on BP Neural Network and Genetic Algorithm Approach[J]. Journal of Ordnance Engineering College, 2016, 28(4): 27-31.
[30] DALZELL K A, LEDERGERBER T, TREJOS T, et al.Incorporating Organic Gunshot Residue into the Forensic Workflow: A Study of Preservation and Stability of the PGSR and OGSR[J]. Forensic Chemistry, 2025, 44: 100651.
[31] 徐永会, 袁诗桐. 一种基于图像变化检测的目标毁伤评估方法[J]. 兵工自动化, 2025, 44(3): 66-69.
XU Y H, YUAN S T.A Target Damage Assessment Method Based on Image Change Detection[J]. Ordnance Industry Automation, 2025, 44(3): 66-69.
[32] 史宪铭, 赵汝东, 尤志峰, 等. 面向多目标的弹药毁伤试验信息获取M策略研究[J]. 装甲兵工程学院学报, 2019(3): 73-77.
SHI X M, ZHAO R D, YOU Z F, et al.Research on Multi-Objective Information Acquisition M Strategy of Ammunition Damage Experiment[J]. Journal of Academy of Armored Force Engineering, 2019(3): 73-77.
[33] 罗小能, 卢晓威. 基于海量数据的实时多维分析方法及其系统: CN119201989A[P].2024-12-27.
LUO X N, LU X W. Real-Time Multidimensional Analysis Method and System Based on Massive Data: CN119201989A[P].2024-12-27.
[34] 胡浩, 冯辅周, 陈财森, 等. 基于多元统计分析的故障检测技术[J]. 火炮发射与控制学报, 2025, 46(1): 83-92.
HU H, FENG F Z, CHEN C S, et al.Fault Detection Technology Based on Multivariate Statistical Analysis[J]. Journal of Gun Launch & Control, 2025, 46(1): 83-92.