SiCp/2009铝基复合材料MAO制备及在酸性盐雾下的腐蚀行为分析

胡皓宸, 王勇, 姜岩, 郭泉忠, 汪川

装备环境工程 ›› 2025, Vol. 22 ›› Issue (8) : 108-120.

PDF(9566 KB)
PDF(9566 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (8) : 108-120. DOI: 10.7643/issn.1672-9242.2025.08.014
船舶及海洋工程装备

SiCp/2009铝基复合材料MAO制备及在酸性盐雾下的腐蚀行为分析

  • 胡皓宸1, 王勇2, 姜岩1, 郭泉忠2,*, 汪川2,*
作者信息 +

Preparation of SiCp/2009 Aluminum Matrix Composites and Their Corrosion Behavior under Acidic Salt Spray

  • HU Haochen1, WANG Yong2, JIANG Yan1, GUO Quanzhong2,*, WANG Chuan2,*
Author information +
文章历史 +

摘要

目的 探究微弧氧化(MAO)技术对碳化硅铝基复合材料(SiCp/Al)在酸性污染海洋环境中的防护性能,通过优化脉冲频率(f)和电解液成分(磷酸钠/硅酸钠质量比,即磷硅比),提升MAO膜层的微观结构、致密度、厚度及耐蚀性。方法 采用正交试验设计,选取不同磷硅比(1∶2、1∶5、1∶10)与脉冲频率(200、250、300 Hz)制备MAO膜层,利用扫描电镜(SEM)分析膜层形貌,通过涡流测厚仪测量膜厚,并结合电化学阻抗谱(EIS)和酸性盐雾试验(ASS)评估其耐蚀性能。结果 磷硅比为2∶1时,膜层厚度达到最大值(63.8 μm),致密度最优。脉冲频率为250 Hz时,膜层结构最致密,偏离该频率(200/300 Hz)均容易导致膜层结构疏松。酸性盐雾测试表明,磷硅比为1∶2时,膜层的结构稳定性最佳。结论 MAO膜层中未发现明显SiC增强相,表明增强相在膜层生长过程中被氧化或脱落,导致膜层致密性降低。由于磷酸根与铝离子更容易沉淀,通过提高电解液中磷硅比,促进AlPO4沉积,从而提高膜层致密性。此外,合理的频率可以控制沉积与烧结的平衡,使得膜层获得最佳的致密性。酸性盐雾环境中,SiCp/Al的MAO膜层因孔隙处萌生点蚀,Cl渗透至膜层/基材界面,引发基材金属溶解,腐蚀产物体积膨胀,从而产生应力,最终导致膜层剥落。

Abstract

The work aims to investigate the protective performance of micro-arc oxidation (MAO) technology on silicon carbide aluminum matrix composites (SiCp/Al) in acidic polluted marine environments, and to improve the microstructure, density, thickness and corrosion resistance of MAO films by optimizing the pulse frequency (f) and electrolyte composition (sodium phosphate/sodium silicate mass ratio, i.e., phosphorus-silicon ratio). A MAO film was prepared by orthogonal experimental design, and different phosphorus-silicon ratios (1 : 2, 1 : 5, 1 : 10) and pulse frequencies (200 Hz, 250 Hz, 300 Hz) were selected, the morphology of the film was analyzed by scanning electron microscopy (SEM), the thickness of the film was measured by eddy current thickness gauge, and the corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS) and acid salt spray test (ASS). When the phosphorus-silicon ratio was 2 : 1, the thickness of the films reached the maximum value (63.8 μm), and the density was the best. When the pulse frequency was 250 Hz, the film structure was the most dense, and deviation from this frequency (200/300 Hz) led to the loosening of the film structure. The acid salt spray test showed that when the phosphorus-silicon ratio was 1 : 2, the structural stability of the film was the best. There is no obvious SiC reinforcement phase in the MAO film, indicating that the reinforcement phase is oxidized or shed during the growth of the film, resulting in the reduction of the compactness of the film. Since phosphate and aluminum ions are more likely to precipitate, the deposition of AlPO4 is promoted by increasing the phosphorus-silicon ratio in the electrolyte, thereby improving the density of the film. In addition, the balance between deposition and sintering can be controlled by a reasonable frequency, resulting in the best possible compactness of the film. In the acidic salt spray environment, the MAO film of SiCp/Al is pitted due to the initiation of pores, and the penetration of Cl⁻ into the interface of the film/substrate causes the dissolution of the substrate metal, and the volume expansion of the corrosion products causes stress, which eventually leads to the peeling of the film.

关键词

铝基复合材料 / 微弧氧化 / 脉冲频率 / 酸性盐雾 / 磷硅比

Key words

aluminum matrix composites / MAO / pulse frequency / acidic salt spray / phosphorus-silicon ratio

引用本文

导出引用
胡皓宸, 王勇, 姜岩, 郭泉忠, 汪川. SiCp/2009铝基复合材料MAO制备及在酸性盐雾下的腐蚀行为分析[J]. 装备环境工程. 2025, 22(8): 108-120 https://doi.org/10.7643/issn.1672-9242.2025.08.014
HU Haochen, WANG Yong, JIANG Yan, GUO Quanzhong, WANG Chuan. Preparation of SiCp/2009 Aluminum Matrix Composites and Their Corrosion Behavior under Acidic Salt Spray[J]. Equipment Environmental Engineering. 2025, 22(8): 108-120 https://doi.org/10.7643/issn.1672-9242.2025.08.014
中图分类号: TG174.4   

参考文献

[1] 曹子林, 张林慧, 仲斌年, 等. 铝基复合材料的制备和研究现状[J]. 金属功能材料, 2023, 30(2): 29-39.
CAO Z L, ZHANG L H, ZHONG B N, et al.Manufacture and Current Research of Aluminum Matrix Composites[J]. Metallic Functional Materials, 2023, 30(2): 29-39.
[2] 张文毓. 金属基复合材料的现状与发展[J]. 装备机械, 2017(2): 79-83.
ZHANG W Y.Present Status and Development of Metal Matrix Composites[J]. The Magazine on Equipment Machinery, 2017(2): 79-83.
[3] AKHTAR F, GUO S J.Development of Si3N4/Al Composite by Pressureless Melt Infiltration[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 629-632.
[4] 陈超群. SiC颗粒增强铝基复合材料的制备工艺及性能研究[D]. 洛阳: 河南科技大学, 2014.
CHEN C Q.Study on Preparation Technology and Properties of SiC Particle Reinforced Aluminum Matrix Composites[D]. Luoyang: Henan University of Science and Technology, 2014.
[5] 潘利文, 林维捐, 唐景凡, 等. 颗粒增强铝基复合材料制备方法及研究现状[J]. 材料导报, 2016, 30(S1): 511-515.
PAN L W, LIN W J, TANG J F, et al.Preparation Methods and Research Status of Particles-Reinforced Aluminum Matrix Composite[J]. Materials Reports, 2016, 30(S1): 511-515.
[6] 李小龙, 王坦, 左孝青, 等. 液相网络及相对密度对SiCp/2024复合材料显微组织与力学性能的影响[J]. 材料导报, 2023, 37(14): 158-163.
LI X L, WANG T, ZUO X Q, et al.Effects of Liquid Network and Relative Density on Microstructure and Mechanical Properties of SiCp/2024 Composites[J]. Materials Reports, 2023, 37(14): 158-163.
[7] 于晓琳. 高体积分数SiCp/Al复合材料精密磨削机理及表面评价研究[D]. 沈阳: 沈阳工业大学, 2012.
YU X L.Study on Precision Grinding Mechanism and Surface Evaluation of High Volume Fraction SiCp/Al Composites[D]. Shenyang: Shenyang University of Technology, 2012.
[8] 罗军明, 吴小红. 添加剂对铝基复合材料微弧氧化膜组织及耐蚀性影响[J]. 材料热处理学报, 2015, 36(4): 185-188.
LUO J M, WU X H.Effect of Additives on Microstructure and Corrosion Resistance of Micro-Arc Oxidation Coatings of Aluminum Matrix Composite[J]. Transactions of Materials and Heat Treatment, 2015, 36(4): 185-188.
[9] 于文静, 刘春忠, 张洪亮, 等. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
YU W J, LIU C Z, ZHANG H L, et al.Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-Arc Oxidation Film on Composites SiCP/6092 Al-Alloy[J]. Chinese Journal of Materials Research, 2025, 39(2): 153-160.
[10] JIANG C Y, WANG Y M, WANG S Q, et al.Growth Characteristics and Properties of Plasma Electrolytic Oxidation Coatings Produced in Different Electrolytes on SiCp/Al Composite[J]. Materials Characterization, 2023, 205: 113344.
[11] 童澍. 基于微弧氧化技术铝合金表面复合氧化膜的制备及耐蚀性能研究[D]. 青岛: 青岛理工大学, 2022.
TONG S.Preparation and Corrosion Resistance of Composite Oxide Film on Aluminum Alloy Surface Based on Micro-Arc Oxidation Technology[D]. Qingdao: Qingdao University of Technology, 2022.
[12] 殷强, 刘元海, 王媛媛, 等. 脉冲频率对机载设备铝合金微弧氧化膜的影响[J]. 海军航空大学学报, 2022, 37(6): 479-485.
YIN Q, LIU Y H, WANG Y Y, et al.Influence of Pulse Frequency on Aluminum Alloy Micro-Arc Oxidation Film of Airborne Equipment[J]. Journal of Naval Aviation University, 2022, 37(6): 479-485.
[13] 陈庚, 苗景国, 方琴, 等. 脉冲频率对7050铝合金微弧氧化膜层特性的影响[J]. 轻合金加工技术, 2022, 50(1): 52-58.
CHEN G, MIAO J G, FANG Q, et al.Effects of Pulse Frequency on Properties of Micro-Arc Oxidation Coatings on 7050 Aluminum Alloy[J]. Light Alloy Fabrication Technology, 2022, 50(1): 52-58.
[14] 刘俐, 许道奎, 穆永亮, 等. 氢对铸态Mg-14Li合金表面形貌和力学性能的影响[J]. 机械工程材料, 2021, 45(12): 13-18.
LIU L, XU D K, MU Y L, et al.Effect of Hydrogen on Surface Morphology and Mechanical Properties of As-Cast Mg-14Li Alloy[J]. Materials for Mechanical Engineering, 2021, 45(12): 13-18.
[15] 余翠兰, 张钰柱, 宋斌杰. 2507双相不锈钢在海水脱硫环境中的腐蚀行为[J]. 材料热处理学报, 2023, 44(1): 95-107.
YU C L, ZHANG Y Z, SONG B J.Corrosion Behavior of 2507 Duplex Stainless Steel in Seawater Desulfurization Environment[J]. Transactions of Materials and Heat Treatment, 2023, 44(1): 95-107.
[16] 张欢, 肖海丽, 肖飞, 等. 刷镀镍修补化学镀镍层工艺及性能研究[J]. 电镀与精饰, 2019, 41(4): 42-46.
ZHANG H, XIAO H L, XIAO F, et al.Study on Process and Properties of Brush Plating Nickel Repairing Electroless Nickel Plating[J]. Plating & Finishing, 2019, 41(4): 42-46.
[17] 沈书成, 谢盼, 刘春雨, 等. 应变速率对Fe-20Mn-3Al- 3Si钢的力学性能及其微观组织的影响[J]. 电子显微学报, 2023, 42(2): 161-170.
SHEN S C, XIE P, LIU C Y, et al.The Effect of Strain Rate on the Mechanical Properties and Microstructure of Deformed Fe20Mn3Al3Si Steel[J]. Journal of Chinese Electron Microscopy Society, 2023, 42(2): 161-170.
[18] 赵君安, 刘璐, 王树众, 等. 超临界水热合成纳米氧化锌的动力学及聚乙烯吡咯烷酮耦合作用机理研究[J]. 西安交通大学学报, 2024, 58(11): 156-163.
ZHAO J A, LIU L, WANG S Z, et al.Research on Kinetics and PVP Coupling Mechanism of Nanoscale Zinc Oxide Synthesized by Supercritical Water Hydrothermal Method[J]. Journal of Xi’an Jiaotong University, 2024, 58(11): 156-163.
[19] 任正茂. 铝合金表面处理技术在耐腐蚀性提升中的应用[J]. 冶金与材料, 2024, 16(12): 79-81.
REN Z M.Application of Aluminum Alloy Surface Treatment Technology in Improving Corrosion Resistance[J]. Metallurgical and Materials, 2024, 16(12): 79-81.
[20] 唐婉霞, 严继康, 吴云峰, 等. 磷酸盐浓度对微弧氧化陶瓷膜耐腐蚀性能的影响[J]. 昆明理工大学学报(自然科学版), 2015, 40(1): 16-22.
TANG W X, YAN J K, WU Y F, et al.Effect of Electrolytic Solution Concentration on Corrosion Resistance of Micro-Arc Oxidized Ceramic Film on Ti6Al4V Titanium Alloy Surface[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2015, 40(1): 16-22.
[21] 但敏, 童洪辉, 沈丽如, 等. 六偏磷酸钠对LD7铝合金微弧氧化陶瓷膜结构及耐腐蚀性能的改善作用[J]. 材料保护, 2011, 44(5): 11-13.
DAN M, TONG H H, SHEN L R, et al.Improvement Effect of Sodium Hexametaphosphate on Microstructure and Corrosion Resistance of Micro-Arc Oxidation Coating of LD7 Aluminum Alloy[J]. Materials Protection, 2011, 44(5): 11-13.
[22] 廖义钊, 王兴平, 高传礼, 等. 60%SiCp/2009铝基复合材料等离子体电解氧化涂层的生长与表征[J]. 材料科学与技术学报, 2023, 42(5): 1423-1434.
LIAO Y Z, WANG X P, GAO C L, et al.Growth and Characterization of Plasma Electrolytic Oxidation Coating on 60%SiCp/2009 Aluminum Matrix Composite[J]. Journal of Materials Science & Technology, 2023, 42(5): 1423-1434.
[23] 薛文斌. SiC颗粒增强体对铝基复合材料微弧氧化膜生长的影响[J]. 金属学报, 2006, 42(4): 350-354.
XUE W B.EFFECT OF SiCp REINFORCEMENT ON GROWTH OF MICROARC OXIDATION FILM ON ALUMINUM MATRIX COMPOSITE[J]. Acta Metallurgica Sinica, 2006, 42(4): 350-354.
[24] 刘心同. 磷酸盐和硅酸盐电解液中微弧氧化膜生长及腐蚀行为研究[D]. 秦皇岛: 燕山大学, 2019.
LIU X T.Study on Growth and Corrosion Behavior of Micro-Arc Oxidation Film in Phosphate and Silicate Electrolyte[D]. Qinhuangdao: Yanshan University, 2019.
[25] 张文谱, 侯芹芹, 闫政, 等. 基于铑离子的重金属工业废水处理技术研究进展[J]. 山东化工, 2022, 51(8): 216-219.
ZHANG W P, HOU Q Q, YAN Z, et al.Research Progress of Heavy Metal Industrial Wastewater Treatment Technology[J]. Shandong Chemical Industry, 2022, 51(8): 216-219.
[26] 杜娟, 张艺莹, 陈翘楚, 等. 航空用铝合金在酸性盐雾环境中腐蚀电化学[J]. 航空材料学报, 2017, 37(4): 33-38.
DU J, ZHANG Y Y, CHEN Q C, et al.Corrosion Electrochemistry of Aluminum Alloy for Aviation in Acid Salt Spray Environment[J]. Journal of Aeronautical Materials, 2017, 37(4): 33-38.
[27] 李娜, 叱培洲. 2024铝合金搅拌摩擦焊接接头在EXCO溶液中的腐蚀行为[J]. 轻合金加工技术, 2020, 48(1): 55-59.
LI N, CHI P Z.Corrosion Behavior of Friction-Stir- Welded Joint of 2024 Aluminum Alloy in EXCO Solution[J]. Light Alloy Fabrication Technology, 2020, 48(1): 55-59.
[28] 吕震宇, 张明习, 耿浩然, 等. 硼酸铝晶须—磷酸铝陶瓷透波材料的制备[J]. 陶瓷, 2008(1): 16-20.
LYU Z Y, ZHANG M X, GENG H R, et al.Preparation of Aluminum Borate WhiskerAluminum Phosphates Ceramic Wave-Transparent Materials[J]. Ceramics, 2008(1): 16-20.

PDF(9566 KB)

Accesses

Citation

Detail

段落导航
相关文章

/