环肋圆柱壳基准模型承载能力预报与试验研究

高原, 赵勰, 谢晓忠, 姚超凡, 陈沙古, 卞如冈, 黄如旭

装备环境工程 ›› 2025, Vol. 22 ›› Issue (8) : 121-129.

PDF(8955 KB)
PDF(8955 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (8) : 121-129. DOI: 10.7643/issn.1672-9242.2025.08.015
船舶及海洋工程装备

环肋圆柱壳基准模型承载能力预报与试验研究

  • 高原1,2, 赵勰1,3, 谢晓忠1,3, 姚超凡4, 陈沙古1,3, 卞如冈1, 黄如旭1,2
作者信息 +

Prediction and Experimental Study of Bearing Capacity of Circular Ribbed Cylindrical Shell Benchmark Model

  • GAO Yuan1,2, ZHAO Xie1,3, XIE Xiaozhong1,3, YAO Chaofan4, CHEN Shagu1,3, BIAN Rugang1, HUANG Ruxu1,2
Author information +
文章历史 +

摘要

目的 分析圆柱壳力学性能,验证结构安全性的预报方法。方法 设计并建造高强钢环肋圆柱壳精车模型,开展静水外压试验,测量结构的应力应变数据和破坏压力,采用数值模拟方法对结构进行计算。结果 试验结果和数值模拟结果基本吻合,采用线性强化弹塑性力学模型可以很好地模拟高强钢的本构关系。试验和计算结果表明,跨中壳板和跨端壳板区域的力学性能是评估环肋圆柱壳结构安全性的重点。结论 研究成果可为深海装备耐压结构的设计和相关理论计算方法的建立提供参考,所采用的数值模拟分析方法可为耐压结构的安全性分析提供参考。

Abstract

The work aims to analyze the mechanical properties of cylindrical shells and verify the prediction method of structural safety. A fine turning model of high-strength steel ring-ribbed cylindrical shell was designed and constructed. The static water external pressure test was carried out. The stress-strain data and failure pressure of the structure were measured. The experimental results were in good agreement with the numerical simulation results. The constitutive relationship of high-strength steel could be well simulated by the linear reinforced elastoplastic mechanics model. The test and calculation results showed that the mechanical properties of the mid-span shell plate and the end-span shell plate were the key points to evaluate the safety of circular ribbed cylindrical shell structures. The research results can provide references for the design of underwater pressure-resistant structures and the establishment of relevant design calculation theory methods, and the numerical simulation analysis method established can serve as a reference for the safety prediction of pressure-resistant structures

关键词

环肋圆柱壳 / 精车模型 / 强度 / 稳定性 / 高强钢 / 材料非线性 / 水压试验

Key words

circular ribbed cylindrical shell / fine turning model / strength / stability / high strength steel / material nonlinearity / hydrostatic test

引用本文

导出引用
高原, 赵勰, 谢晓忠, 姚超凡, 陈沙古, 卞如冈, 黄如旭. 环肋圆柱壳基准模型承载能力预报与试验研究[J]. 装备环境工程. 2025, 22(8): 121-129 https://doi.org/10.7643/issn.1672-9242.2025.08.015
GAO Yuan, ZHAO Xie, XIE Xiaozhong, YAO Chaofan, CHEN Shagu, BIAN Rugang, HUANG Ruxu. Prediction and Experimental Study of Bearing Capacity of Circular Ribbed Cylindrical Shell Benchmark Model[J]. Equipment Environmental Engineering. 2025, 22(8): 121-129 https://doi.org/10.7643/issn.1672-9242.2025.08.015
中图分类号: U661.4   

参考文献

[1] TIMOSHENKO S P, GERE J M.弹性稳定理论[M]. 2版. 北京: 科学出版社, 1965.
TIMOSHENKO S P, GERE J M.Theory of Elastic Stability[M]. 2nd ed. Beijing: Science Press, 1965.
[2] GALLETLY G D, SLANKARD R C, WENK E.General Instability Pressure of Ring-Stiffened Cylindrical Shells Subject to External Hydrostatic Pressure-A Comparison of Theory and Experiment[R]. New York: ASME, 1957.
[3] BARUCH M, SINGER J.Effect of Eccentricity of Stiffeners on the General Instability of Stiffened Cylindrical Shells under Hydrostatic Pressure[J]. Journal of Mechanical Engineering Science, 1963, 5(1): 23-27.
[4] SINGER J, BARUCH M, HARARI O.Inversion of the Eccentricity Effect in Stiffened Cylindrical Shells Buckling under External Pressure[J]. Journal of Mechanical Engineering Science, 1966, 8(4): 363-373.
[5] VOCE S.Buckling under External Hydrostatic Pressure of Orthotropic Cylindrical Shells with Evenly Spaced Equal Strength Circular Ring Frames[J]. Ocean Engineering, 1969, 1: 521-534.
[6] 邱昌贤, 黄进浩, 秦天, 等. 壳板径向初挠度对内外环肋圆柱壳结构强度的影响分析[J]. 中国造船, 2017, 58(4): 65-75.
QIU C X, HUANG J H, QIN T, et al.Influence Analysis of Initial Radial Deformation on Structural Strength of Cylindrical Shell with Internal or External Ribs[J]. Shipbuilding of China, 2017, 58(4): 65-75.
[7] 张海宽, 邱昌贤, 陆波. 基于双模量理论的高强度钢环肋圆柱壳总体稳定性塑性修正方法[J]. 船舶力学, 2017, 21(7): 888-894.
ZHANG H K, QIU C X, LU B.Plastic Modification Methods Based on Double Modulus Theory for General Stability of Ring-Stiffened Cylindrical Shell of High Strength Steel[J]. Journal of Ship Mechanics, 2017, 21(7): 888-894.
[8] 陈沙古, 谢晓忠, 高原, 等. 大厚度环肋圆柱壳三维应力分析方法研究[J]. 船舶力学, 2023, 27(8): 1188-1197.
CHEN S G, XIE X Z, GAO Y, et al.Three Dimensional Stress Analysis Method of Ring-Stiffened Cylindrical Shell with Large Thickness[J]. Journal of Ship Mechanics, 2023, 27(8): 1188-1197.
[9] 邱昌贤, 黄进浩, 秦天, 等. 内肋骨长舱段塑性总体稳定性计算方法研究[J]. 船舶力学, 2021, 25(9): 1232-1238.
QIU C X, HUANG J H, QIN T, et al.Theoretical Research on Calculation Methods for Plastic General Buckling Stability of Long Cylindrical Pressure Hull with Internal Ribs[J]. Journal of Ship Mechanics, 2021, 25(9): 1232-1238.
[10] 陈沙古, 高原, 张平平, 等. 内置环肋圆柱壳三维应力计算方法适应性分析[J]. 舰船科学技术, 2024, 46(24): 15-19.
CHEN S G, GAO Y, ZHANG P P, et al.Adaptability Analysis of Three Dimensional Stress Calculation Method for Inside Ring-Stiffened Cylindrical Shell[J]. Ship Science and Technology, 2024, 46(24): 15-19.
[11] 高原, 周成, 孙军. 结构强度性能标准模型试验报告[R]. 无锡: 中国船舶科学研究中心, 2023.
GAO Y, ZHOU C, SUN J.Test Report of Structural Strength Performance Standard Model[R]. Wuxi: CSSRC, 2023.
[12] 高原. 结构强度性能标准模型论证报告[R]. 无锡: 中国船舶科学研究中心, 2022.
GAO Y.Argumentation Report of Structural Strength Performance Standard Model[R]. Wuxi: CSSRC, 2022.
[13] 高原. 环肋圆柱壳补充验证模型计算报告[R]. 无锡: 中国船舶科学研究中心, 2022.
GAO Y.Calculation Report of Supplementary Verification Model for Ring-ribbed Cylindrical shell[R]. Wuxi: CSSRC, 2022.
[14] 陈沙古. 结构安全性验证缩比模型试验报告[R]. 无锡: 中国船舶科学研究中心, 2012.
CHEN S G.Structural Safety Verification Scale Model Test Report[R]. Wuxi: CSSRC, 2012.
[15] 谢晓忠, 赵勰, 冯士超, 等. 含初始静应力场的水下耐压结构强度与稳定性研究[J]. 船舶力学, 2025, 29(3): 465-473.
XIE X Z, ZHAO X, FENG S C, et al.Strength and Stability Analysis on Hydrostatic Pressure Structure with Initial Stress Field[J]. Journal of Ship Mechanics, 2025, 29(3): 465-473.
[16] 王睿璇, 黄进浩. 环肋圆柱壳结构参数与失稳模式关系研究[J]. 装备环境工程, 2025, 22(2): 77-86.
WANG R X, HUANG J H.Relationship between Structural Parameters and Instability Mode of Ring-Stiffened Cylindrical Shell[J]. Equipment Environmental Engineering, 2025, 22(2): 77-86.
[17] 许辑平. 潜艇强度[M]. 北京: 国防工业出版社, 1980: 10-19.
XU J P.Submarine Strength[M]. Beijing: National Defense Industry Press, 1980: 10-19.
[18] 谢祚水, 王自力, 吴剑国. 潜艇结构分析[M]. 武汉: 华中科技大学出版社, 2004: 20-110.
XIE Z S, WANG Z L, WU J G.Submarine Structure Analysis[M]. Wuhan: Huazhong University of Science and Technology Press, 2004: 20-110.
[19] 国防科学技术工业委员会. 潜艇结构设计计算方法: GJB/Z 21A—2001[S]. 北京: 中国标准出版社, 2001.
Commission of Science, Technology and Industry for National Defense. Submarine Structural Design Calculation Method: GJB/Z 21A—2001[S]. Beijing: Standards Press of China, 2001.
[20] 欧阳吕伟, 叶聪, 李艳青, 等. 大深度潜水器耐压结构强度计算方法[M]. 北京: 国防工业出版社, 2022.
OUYANG L W, YE C, LI Y Q, et al.Strength Calculation Method of Pressure-Resistant Structure of Deep Submersible[M]. Beijing: National Defense Industry Press, 2022.
[21] 徐秉汉, 朱邦俊, 欧阳吕伟, 等. 现代潜艇结构强度的理论与试验[M]. 北京: 国防工业出版社, 2007: 255-265.
XU B H, ZHU B J, OUYANG L W, et al.Theory and Experiments on Modern Submarine Structure Strength[M]. Beijing: National Defense Industry Press, 2007: 255-265.
[22] 姚超凡. 小尺度环肋圆柱壳精车模型制造总结报告[R]. 烟台: 台海玛努尔核电设备有限公司, 2022.
YAO C F.Summary Report on the Manufacturing of Precision Turning Models for Small-scale Ring-ribbed Cylindrical Shells[R]. Yantai: Taihai Manoir Nuclear Equipment Co, Ltd, 2022.
[23] 周炬. ANSYS Workbench 有限元分析实例详解[M]. 北京:人民邮电出版社, 2023: 293-301.
ZHOU J.Detailed Explanation of Finite Element Analysis Examples in ANSYS Workbench[M]. Beijing: Posts & Telecommunications Press, 2023: 293-301.
[24] 王新敏. ANSYS工程结构数值分析[M]. 北京: 人民交通出版社, 2007: 443-451.
WANG X M.Numerical Analysis of Engineering Structures by ANSYS[M]. Beijing: China Communications Press, 2007: 443-451.
[25] 王仁, 黄文彬, 黄筑平. 塑性力学引论[M]. 北京: 北京大学出版社, 1992: 2-27.
WANG R, HUANG W B, HUANG Z P.Introduction to Plastic Mechanics[M]. Beijing: Beijing University Press, 1992: 2-27.

PDF(8955 KB)

Accesses

Citation

Detail

段落导航
相关文章

/