超高海拔环境服役风机叶片防雷设计与验证

杨怀宇, 刘正树, 武文龙, 毛玉娇, 陈川, 向利

装备环境工程 ›› 2025, Vol. 22 ›› Issue (8) : 137-147.

PDF(10377 KB)
PDF(10377 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (8) : 137-147. DOI: 10.7643/issn.1672-9242.2025.08.017
重大工程装备

超高海拔环境服役风机叶片防雷设计与验证

  • 杨怀宇1, 刘正树2, 武文龙1, 毛玉娇2, 陈川3, 向利3,*
作者信息 +

Simulation Research on Lightning Protection Design of Wind Turbine Blades in Ultra-high Altitude Environments

  • YANG Huaiyu1, LIU Zhengshu2, WU Wenlong1, MAO Yujiao2, CHEN Chuan3, XIANG Li3,*
Author information +
文章历史 +

摘要

目的 进行风机叶片防雷设计,使其可以适应超高海拔环境,达到安全稳定运行效果。方法 利用仿真模拟技术针对风机叶片的叶身和叶尖接闪器开展设计研究,主要研究接闪器在雷电引入后表面的电场、电流分布,以及拐点或尖端等结构薄弱区温度分布,并标记重点关注部位,对其温度分布开展研究分析,从而评估结构设计的合理性。采用初始先导附着试验、后续冲击附着试验、电弧引入试验以及传导电流试验方法针对设计的叶片结构开展性能验证测试。结果 通过仿真模拟数据分析发现,叶尖接闪器具有较多的雷击附着点,尤其需关注叶片内部的尖端区域。叶身接闪器的通流能力较强,但是可能会在接闪器的边沿处产生局部熔蚀。通过对设计的风机叶片样品进行防雷性能测试,试验中电流放电未造成避雷系统及根部连接的结构损伤,放电瞬间连接处没有火花,试验过程未发现松动,且连接处没有损坏。结论 通过仿真模拟和试验测试研究分析表明,设计的适高海拔风机叶片接闪器布局结构合理,叶尖和叶身接闪器均可有效降低雷击作用。还可以进一步优化结构设计,比如对叶片内部的尖端作圆角处理,降低其接闪概率。叶身接闪器建议增加接闪面积,如增厚边缘和增大圆角,尽可能减小局部损伤。同时,结合服役环境特征,调整设计满足适应高海拔的叶片,保障风机叶片长效安全运行。

Abstract

The work aims to carry out lightning protection design of wind turbine blades, to make them adapt to the ultra-high altitude environment and achieve safe and stable operation effects. In this paper, simulation technology was used to conduct design research on the blade body lightning arrester and the tip lightning arrester of the wind turbine blades. The main research focused on the surface electric field, current distribution after the lightning was introduced into the lightning arrester, as well as the temperature distribution in the weak structural areas such as the inflection points or tips. The key areas of concern were marked, and the temperature distribution was studied, thus the rationality of structural design could be evaluated. Furthermore, performance test research on the designed blade structure was carried out through the initial leader attachment test, subsequent impulse attachment test, arc introduction test, and conduction current test methods. Through simulation and data analysis, it was found that the tip lightning arrester had more lightning attachment points, especially the tip region inside the blade. The arc introduction test found that the current discharge did not cause obvious damage to the lightning protection system, the connection of the air-termination was not loose, and the current discharge did not cause obvious damage to the blade structure. In the conduction current test, the current discharge did not cause structural damage to the lightning protection system and the root connection. There was no spark at the connection point during the discharge moment, and the connection point was not damaged. Analysis through simulation and experimental testing indicates that the layout structure of the designed high-altitude wind turbine blade lightning receptors is reasonable, and both the tip lightning receptors and the blade body lightning receptors can effectively reduce the impact of lightning strikes. But performance can be further improved. For example, when installing lightning receptors on the blade body, the tips inside should be rounded to reduce the probability of lightning strikes on internal tips. It is recommended to thicken the edges of the blade receptors, increase the radius of curvature, and expand the lightning-receiving area to minimize local damage as much as possible. At the same time, design adjustments should be made based on service environment characteristics to meet the requirements for high-altitude blades, ensuring long-term safe operation of wind turbine blades.

关键词

超高海拔 / 风机叶片 / 防雷设计 / 仿真模拟 / 接闪器 / 防雷防护措施

Key words

ultra-high altitude / wind turbine blade / lightning protection design / simulation / lightning arrester / lightning protection measure

引用本文

导出引用
杨怀宇, 刘正树, 武文龙, 毛玉娇, 陈川, 向利. 超高海拔环境服役风机叶片防雷设计与验证[J]. 装备环境工程. 2025, 22(8): 137-147 https://doi.org/10.7643/issn.1672-9242.2025.08.017
YANG Huaiyu, LIU Zhengshu, WU Wenlong, MAO Yujiao, CHEN Chuan, XIANG Li. Simulation Research on Lightning Protection Design of Wind Turbine Blades in Ultra-high Altitude Environments[J]. Equipment Environmental Engineering. 2025, 22(8): 137-147 https://doi.org/10.7643/issn.1672-9242.2025.08.017
中图分类号: TK83   

参考文献

[1] 刘志远. 西藏超高海拔地区风能资源特性分析[J]. 水电站设计, 2020, 36(1): 82-88.
LIU Z Y.Analysis on Wind Resource Characteristic in Super-High Altitude Region of Tibet[J]. Design of Hydroelectric Power Station, 2020, 36(1): 82-88.
[2] 何一, 崔怀树, 孙庆. 西藏风力发电发展前景浅析[J]. 水电站设计, 2018, 34(4): 69-72.
HE Y, CUI H S, SUN Q.Prospects for Wind Power Development in Tibet[J]. Design of Hydroelectric Power Station, 2018, 34(4): 69-72.
[3] 王黉. 川藏地区雷暴大风活动特征和产生机制的初步研究[D]. 北京: 中国气象科学研究院, 2020.
WANG H.Preliminary Study on the Characteristics and Mechanism of Thunderstorm Gale Activity in Sichuan and Tibet[D]. Beijing: Chinese Academy of Meteorological Sciences, 2020.
[4] 周姬. 基于多种统计模型的风电机组故障预测[D]. 长沙: 长沙理工大学, 2019.
ZHOU J.Fault Prediction of Wind Turbine Based on Various Statistical Models[D]. Changsha: Changsha University of Science & Technology, 2019.
[5] 刘志远, 李杨扬, 何一. 超高海拔地区负切变现象主要成因初步探究[J]. 粘接, 2019, 46(7): 56-62.
LIU Z Y, LI Y Y, HE Y.A Preliminary Study on the Main Causes of Negative Shear in Ultra-High Altitude Area[J]. Adhesion, 2019, 46(7): 56-62.
[6] 张双益, 黄四维, 燕志婷, 等. 西藏措美高原风电场风能资源特性研究[J]. 风能, 2019(5): 78-82.
ZHANG S Y, HUANG S W, YAN Z T, et al.Study on Wind Energy Resource Characteristics of Xizang Cuomei Plateau Wind Farm[J]. Wind Energy, 2019(5): 78-82.
[7] 多吉次仁, 德庆卓嘎, 旦增伦珠, 等. 1998—2018年西藏地区雷电灾害时空分布及灾害特征分析[J]. 高原科学研究, 2020, 4(3): 30-35.
DUOJICIREN, DE Q, DAN Z, et al.Study on the Spatial-Temporal Distribution and Characteristics of Lightning Hazardin Tibet during 1998—2018[J]. Plateau Science Research, 2020, 4(3): 30-35.
[8] 李存义, 张博, 范晓旭. 风电机组叶片覆冰风险分析及应对措施[J]. 中国安全科学学报, 2024, 34(S1): 199-204.
LI C Y, ZHANG B, FAN X X.Risk Analysis and Countermeasures of Wind Turbine Blade Icing[J]. China Safety Science Journal, 2024, 34(S1): 199-204.
[9] 王艳姣. 风电机组防雷保护研究[D]. 成都: 西南交通大学, 2018.
WANG Y J.Research on Lightning Protection of Wind Turbine[D]. Chengdu: Southwest Jiaotong University, 2018.
[10] 周家东, 熊秀, 付磊, 等. 风电机组叶片雷电防护金属网防雷研究[J]. 风能, 2016(8): 78-82.
ZHOU J D, XIONG X, FU L, et al.Study on Lightning Protection of Wind Turbine Blades with Metal Mesh[J]. Wind Energy, 2016(8): 78-82.
[11] 蒋凌峰, 蒋正龙, 谢鹏康, 等. 风机叶片金属网防护下的雷击损伤特性研究[J]. 湖南电力, 2023, 43(6): 6-10.
JIANG L F, JIANG Z L, XIE P K, et al.Study on Lightning Damage Characteristics of Wind Turbine Blades under Metal Mesh Protection[J]. Hunan Electric Power, 2023, 43(6): 6-10.
[12] 何征, 熊秀, 范晓宇, 等. 风电叶片片段式导流条雷电防护性能研究[J]. 风能, 2017(7): 60-63.
HE Z, XIONG X, FAN X Y, et al.Study on Lightning Protection Performance of Segmented Guide Bars of Wind Turbine Blades[J]. Wind Energy, 2017(7): 60-63.
[13] 康楠, 薛浩鹏, 杜鸣心, 等. 风机叶片接闪器布局可靠性仿真分析与试验验证[J]. 天津科技, 2019, 46(7): 31-32.
KANG N, XUE H P, DU M X, et al.Simulation Analysis and Test Validation of Layout Reliability of Lightning Receptor of Wind Turbine Blade[J]. Tianjin Science & Technology, 2019, 46(7): 31-32.
[14] 孙乐场, 刁书广, 张文林. 基于片段式导流条的风电叶片防雷改造方案分析[J]. 自动化应用, 2021(4): 31-33.
SUN L C, DIAO S G, ZHANG W L.Analysis of the Plan for Lightning Protection of Wind Turbine Blades Based on Segmented Guide Strips[J]. Automation Application, 2021(4): 31-33.
[15] 黄有慧, 易华, 杨瑞志. 雷电导流条在风力发电叶片防雷改造中的应用[J]. 天津科技, 2019, 46(8): 57-58.
HUANG Y H, YI H, YANG R Z.Application of Lightning Guide Bar in Lightning Protection of Wind Turbine Blade[J]. Tianjin Science & Technology, 2019, 46(8): 57-58.
[16] 李圆圆, 张向东, 冯威. 压延金属网在碳纤维叶片雷电防护上的应用研究[J]. 风能, 2021(12): 68-71.
LI Y Y, ZHANG X D, FENG W.Study on the Application of Calendered Metal Mesh in Lightning Protection of Carbon Fiber Blades[J]. Wind Energy, 2021(12): 68-71.
[17] 苑东雨. 风力机组的防雷重要性和防雷措施[J]. 湖北农机化, 2019(22): 91.
YUAN D Y.Importance and Measures of Lightning Protection for Wind Turbines[J]. Hubei Agricultural Mechanization, 2019(22): 91.
[18] 段雁超, 杜鸣心, 熊秀. 风电机组玻纤叶片雷电接闪器布局仿真分析[J]. 电瓷避雷器, 2020(3): 162-166.
DUAN Y C, DU M X, XIONG X.Layout Simulation of Lightning Receptors for Glass Fiber Blade of Wind Turbine[J]. Insulators and Surge Arresters, 2020(3): 162-166.
[19] 邹广宇, 杨智博, 姚京源, 等. 基于雷电分形理论的风机叶片接闪研究[J]. 电气应用, 2025, 44(2): 97-105.
ZOU G Y, YANG Z B, YAO J Y, et al.Research on Lightning Strikes on Wind Turbine Blades Based on Fractal Theory of Lightning[J]. Electrotechnical Application, 2025, 44(2): 97-105.
[20] 叶清华, 徐卫星, 符传进, 等. 基于接闪极性效应的大型风电场雷击风险评估研究[J]. 气象水文海洋仪器, 2023, 40(3): 55-58.
YE Q H, XU W X, FU C J, et al.Lightning Risk Assessment of Large-Scale Wind Farm Based on Lightning Flashover Polarity Effect[J]. Meteorological, Hydrological and Marine Instruments, 2023, 40(3): 55-58.
[21] 顾建伟, 陈维江, 黄胜鑫, 等. 风电机组叶片雷击风险分布特征[J]. 中国电机工程学报, 2023, 43(9): 3651-3664.
GU J W, CHEN W J, HUANG S X, et al.Distribution Characteristics of Lightning Strike Risk along Wind Turbine Blades[J]. Proceedings of the CSEE, 2023, 43(9): 3651-3664.
[22] 王健, 蓝磊, 王羽, 等. 风机叶片雷击概率分布仿真计算[J]. 电瓷避雷器, 2021(3): 133-141.
WANG J, LAN L, WANG Y, et al.Simulation Calculation of Lightning Strike Probability Distribution on Wind Turbine Blades[J]. Insulators and Surge Arresters, 2021(3): 133-141.

基金

西藏自治区“十四五”时期清洁能源科技重大专项(XZ202201ZD0003G)

PDF(10377 KB)

Accesses

Citation

Detail

段落导航
相关文章

/