Analysis of the Impact of Wear Characteristics of Electrical Fittings on Corrosion in Different Corrosive Environments

ZHANG Peijun, ZHOU Longde, MA Qunkai, QIU Weixing

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (6) : 86-92.

PDF(1843 KB)
PDF(1843 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (6) : 86-92. DOI: 10.7643/issn.1672-9242.2025.06.010
Ships and Marine Engineering Equipment

Analysis of the Impact of Wear Characteristics of Electrical Fittings on Corrosion in Different Corrosive Environments

  • ZHANG Peijun1, ZHOU Longde2, MA Qunkai3, QIU Weixing4
Author information +
History +

Abstract

The work aims to investigate the impact of different wear amounts of electrical fittings on the corrosion rate and products in marine and industrial atmospheres. Environmental simulation tests were conducted to simulate the marine corrosion environment, the industrial corrosion environment, and the environment of fitting wear, and to study the impact of different wear amounts on the corrosion patterns in marine and industrial atmospheres, clarifying the mechanism of wear-corrosion failure. In the marine atmosphere environment, under the condition of corrosion for 120 hours, the weight loss of the sample without wear was 0.070 2 g, and the corrosion rate was 0.300 μm/h; the weight loss of the sample with wear for 900 seconds was 0.081 3 g, and the corrosion rate was 0.343 μm/h; the weight loss of the corrosion sample with wear for 1 800 seconds was 0.087 3 g, and the corrosion rate was 0.374 μm/h, with the corrosion products being α-FeOOH, γ-FeOOH, β-FeOOH, Fe2O3 and Fe3O4. In the industrial atmosphere environment, under the condition of corrosion for 120 hours, the weight loss of the sample without wear was 0.071 3 g, and the corrosion rate was 0.305 μm/h; the weight loss of the sample with wear for 900 seconds was 0.084 9 g, and the corrosion rate was 0.355 μm/h; the weight loss of the corrosion sample with wear for 1 800 seconds was 0.092 4 g, and the corrosion rate was 0.396 μm/h, with the corrosion products being FeSO4 and FeOOH. The corrosion rate in the industrial atmosphere environment is faster than that in the marine atmosphere environment. The corrosion products in both environments are preferentially generated at defects such as grooves and peeling pits, and gradually change from point corrosion to uniform corrosion with the increase of time.

Key words

marine atmosphere environment / industrial atmosphere environment / electrical fittings / wear / corrosion behavior / failure mechanism

Cite this article

Download Citations
ZHANG Peijun, ZHOU Longde, MA Qunkai, QIU Weixing. Analysis of the Impact of Wear Characteristics of Electrical Fittings on Corrosion in Different Corrosive Environments[J]. Equipment Environmental Engineering. 2025, 22(6): 86-92 https://doi.org/10.7643/issn.1672-9242.2025.06.010

References

[1] 夏晓健, 金焱, 乔汉文, 等. 输变电设备腐蚀状况调查与分析[J]. 腐蚀科学与防护技术, 2019, 31(2): 121-127.
XIA X J, JIN Y, QIAO H W, et al.Survey on Corrosion of Power Transmission and Transformation Equipment[J]. Corrosion Science and Protection Technology, 2019, 31(2): 121-127.
[2] 王晓辉, 李新梅, 逯平平. 特高压输电线电力金具磨损研究现状[J]. 热加工工艺, 2020, 49(16): 11-14.
WANG X H, LI X M, LU P P.Research Status of Electric Power Fitting Wear of UHV Transmission Lines[J]. Hot Working Technology, 2020, 49(16): 11-14.
[3] 吴天博, 王宗江. 架空输电线路金具腐蚀失效分析研究[J]. 电气开关, 2020, 58(1): 69-72.
WU T B, WANG Z J.Corrosion Failure Analysis and Study on Fittings of Overhead Power Transmission Lines[J]. Electric Switchgear, 2020, 58(1): 69-72.
[4] 李东亮, 付贵勤, 朱苗勇, 等. 湿热海洋大气中SO2污染对Q235B钢腐蚀行为的影响[J]. 钢铁, 2017, 52(1): 64-70.
LI D L, FU G Q, ZHU M Y, et al.Effect of SO2 Pollution on Corrosion Behavior of Q235B Steel in Hot and Humid Marine Atmosphere[J]. Iron & Steel, 2017, 52(1): 64-70.
[5] 周祝锡, 邵云亮. 刮板输送机链条磨损研究现状与耐磨策略[J]. 今日制造与升级, 2024(7): 99-101.
ZHOU Z X, SHAO Y L.Research Status and Wear-Resistant Strategy of Chain Wear of Scraper Conveyor[J]. Manufacture & Upgrading Today, 2024(7): 99-101.
[6] 路富刚, 魏世忠. 腐蚀磨损的研究现状与发展趋势[J]. 铸造技术, 2018, 39(8): 1857-1860.
LU F G, WEI S Z.Research Status and Development Trend of Corrosion and Wear[J]. Foundry Technology, 2018, 39(8): 1857-1860.
[7] 吴亚平, 宗立君, 米春旭, 等. 山东省输变电设备的大气腐蚀与评价现状[J]. 装备环境工程, 2025, 22(2): 105-113.
WU Y P, ZONG L J, MI C X, et al.Atmospheric Corrosion and Evaluation Status of Power Transmission and Transformation Equipment in Shandong Province[J]. Equipment Environmental Engineering, 2025, 22(2): 105-113.
[8] 王倩, 樊志彬, 黄振宁, 等. 热浸镀锌螺栓在不同大气环境中的腐蚀行为研究及其环保性能评价指标分析[J]. 电镀与涂饰, 2025, 44(3): 34-45.
WANG Q, FAN Z B, HUANG Z N, et al.Corrosion Behavior of Hot-Dip Galvanized Bolts in Different Atmospheric Environments and Environmental Performance Evaluation[J]. Electroplating & Finishing, 2025, 44(3): 34-45.
[9] 王进建, 刘静, 陈润农, 等. 海洋工程用9CrMo耐蚀钢筋组织及腐蚀行为[J]. 钢铁, 2023, 58(5): 112-123.
WANG J J, LIU J, CHEN R N, et al.Microstructure and Corrosion Behavior of 9CrMo Corrosion-Resistant Steel Bars for Marine Engineering[J]. Iron & Steel, 2023, 58(5): 112-123.
[10] 裴兵兵, 裴文乐, 王建梅, 等. 人工海水中Q345钢的腐蚀磨损行为研究[J/OL]. 润滑与密封, 2024: 1-8. (2024-06-06). https://kns.cnki.net/kcms/detail/44.1260.TH.20240605.1536.031.html.
PEI B B, PEI W Y, WANG J M, et al. Study on Corrosion and Wear Behavior of Q345 Steel in Artificial Seawater[J/OL]. Lubrication Engineering, 2024: 1-8. (2024- 06-06). https://kns.cnki.net/kcms/detail/44.1260.TH.20240605.1536.031.html.
[11] 宫翠,周玉丽. 铬含量对低碳钢耐海洋大气腐蚀性能的影响[J/OL]. 上海金属, 202: 1-7.(2024-10-23). https://doi.org/10.19947/j.issn.1001-7208.2024.04.04.
GONG C, ZHOU Y L.Chromium Content on the Influence of the Marine Atmospheric Corrosion Resistance of Mild Steel[J/OL]. Shanghai Metal, 2024: 1-7.(2024-10- 23). https://doi.org/10.19947/j.issn.1001-7208.2024.04.04.
[12] 燕超, 仝哲, 曾群锋, 等. 25Cr3Mo低合金钢在模拟矿井水环境下的腐蚀磨损行为[J/OL]. 热加工工艺, 2024 (21): 106-113. (2024-11-06). https://doi.org/10.14158/j.cnki.1001-3814.20240402.
YAN C, TONG Z, ZENG Q F, et al. Corrosion and Wear Behavior of 25Cr3Mo Low Alloy Steel under Simulated Mine Water Environment[J/OL]. The Hot Working Processes, 2024, (21): 106-11. (2024-11-06). https://doi.org/10.14158/j.cnki.1001-3814.20240402.
[13] 刘雨薇, 尹奇, 王振尧, 等. 热镀锌层在模拟沿海工业大气环境中的腐蚀行为[J]. 焊接学报, 2018, 39(5): 87-91.
LIU Y W, YIN Q, WANG Z Y, et al.Corrosion Behavior of Hot Dip Galvanized Coating Exposed in a Simulated Coastal-Industrial Atmosphere[J]. Transactions of the China Welding Institution, 2018, 39(5): 87-91.
[14] 余建飞, 陈志坚, 张明, 等. Q235和Q345钢在武汉大气环境中24个月的腐蚀行为[J]. 材料保护, 2025, 58(1): 56-63.
YU J F, CHEN Z J, ZHANG M, et al.Corrosion Behavior of Q235 and Q345 Steel in Wuhan Atmospheric Environment for 24 Months[J]. Materials Protection, 2025, 58(1): 56-63.
[15] 苏景新, 刘波, 郭英. Q235钢在模拟海水中的缝隙腐蚀[J]. 腐蚀与防护, 2018, 39(2): 129-135.
SU J X, LIU B, GUO Y.Crevice Corrosion of Q235 Steel in Simulated Seawater[J]. Corrosion & Protection, 2018, 39(2): 129-135.
[16] 田永武, 吕战鹏, 茹祥坤, 等. 预变形对Q235钢在硫酸溶液中腐蚀行为的影响及硫脲的缓蚀作用[J]. 腐蚀与防护, 2016, 37(6): 439-443.
TIAN Y W, LYU Z P, RU X K, et al.Effect of Predeformation on Corrosion Behavior of Q235 Steel in Sulfuric Acid Solution and Inhibiting Effect of Thiourea[J]. Corrosion & Protection, 2016, 37(6): 439-443.
[17] 孙静, 齐元甲, 刘辉, 等. 海洋环境下钛及钛合金的腐蚀磨损研究进展[J]. 材料保护, 2020, 53(1): 151-156.
SUN J, QI Y J, LIU H, et al.Research Progress on Tribo-Corrosion of Titanium and Titanium Alloys in Seawater Environment[J]. Materials Protection, 2020, 53(1): 151-156.
[18] 肖盼, 李伟光, 潘吉林. 低合金高强钢与Q235碳钢在成都大气环境中的腐蚀行为[J]. 腐蚀与防护, 2024, 45(12): 64-71.
XIAO P, LI W G, PAN J L.Corrosion Behavior of Low Alloy High Strength Steel and Q235 Carbon Steel in Chengdu Atmospheric Environment[J]. Corrosion & Protection, 2024, 45(12): 64-71.
[19] 王方强, 王志高, 海潮, 等. 碳钢在达州典型大气环境下的腐蚀行为研究[J]. 四川电力技术, 2024, 47(2): 89-93.
WANG F Q, WANG Z G, HAI C, et al.Study on Corrosion Behavior of Carbon Steel in Typical Atmospheric Environments in Dazhou[J]. Sichuan Electric Power Technology, 2024, 47(2): 89-93.
[20] 刘迎春, 张智超, 计静, 等. 酸性大气环境对钢梁腐蚀行为的研究[J]. 甘肃科学学报, 2024, 36(2): 117-123.
LIU Y C, ZHANG Z C, JI J, et al.Research on the Corrosion Behavior of Steel Beams in the Acidic Atmospheric Environment[J]. Journal of Gansu Sciences, 2024, 36(2): 117-123.
[21] 李晗, 魏小琴, 王琪, 等. 飞机典型吊挂材料热带海洋环境大气腐蚀-动态疲劳寿命研究[J]. 装备环境工程, 2024, 21(12): 121-127.
LI H, WEI X Q, WANG Q, et al.Corrosion-Fatigue Life of Aircraft Suspension Materials in Tropical Marine Atmosphere[J]. Equipment Environmental Engineering, 2024, 21(12): 121-127.
[22] 王婉煜, 王雅洁, 王贵明, 等. 南方区域大气环境下输电线路钢结构部件腐蚀机理及防范措施研究[J]. 全面腐蚀控制, 2023, 37(11): 10-15.
WANG W Y, WANG Y J, WANG G M, et al.Research on Corrosion Mechanism and Preventive Measures of Steel Structure Components of Transmission Lines under Atmospheric Environment in Southern Region[J]. Total Corrosion Control, 2023, 37(11): 10-15.
[23] 王娇娇, 刘宏春, 刘泳, 等. 输电铁塔用Q355BNH耐候角钢在大气环境中的腐蚀行为[J]. 河北冶金, 2023(10): 15-19.
WANG J J, LIU H C, LIU Y, et al.Corrosion Behavior of Q355BNH weather-Resistant Angle Steel for Transmission Towers in Atmospheric Environment[J]. Hebei Metallurgy, 2023(10): 15-19.
[24] 汪洋, 刘元海, 慕仙莲, 等. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
WANG Y, LIU Y H, MU X L, et al.Effect of Environmental Factors on Material Transfer in Thin Liquid Film during Atmospheric Corrosion Process in Marine Environment[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5): 1015-1021.
[25] 李怀峰, 贾鑫, 王宏博, 等. 模拟工业海洋大气环境下Q345qDNH钢锈蚀行为研究[J]. 钢结构(中英文), 2023, 38(10): 16-24.
LI H F, JIA X, WANG H B, et al.Study on Corrosion Behavior of Q345qDNH Weathering Steel in Simulated Industrial Marine Atmosphere[J]. Steel Construction (Chinese & English), 2023, 38(10): 16-24.

Funding

Gansu Provincial Natural Science Foundation (24JRRA738); Research Project of Lanzhou Petrochemical Vocational and Technical University (2024KY-06)
PDF(1843 KB)

Accesses

Citation

Detail

Sections
Recommended

/