Behind Armor Blunt Trauma Response of Biological Rib Targets by Falling Weight Impact

ZHOU Zhenlu, AN Shuo, XIONG Manman, MA Xuejiao, DU Qinglei, LU Haitao, ZANG Liwei, QIN Bin

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 36-43.

PDF(24242 KB)
PDF(24242 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 36-43. DOI: 10.7643/issn.1672-9242.2025.07.005
Special Topic—Application and Collaborative Evaluation Technology of Light Weapons in Complex Environments

Behind Armor Blunt Trauma Response of Biological Rib Targets by Falling Weight Impact

  • ZHOU Zhenlu, AN Shuo, XIONG Manman, MA Xuejiao, DU Qinglei, LU Haitao, ZANG Liwei, QIN Bin
Author information +
History +

Abstract

The work aims to investigate the characteristics of blunt chest trauma under low-speed impacts and evaluate the injury degree by injury criteria. The characteristics of blunt injury were revealed by investigating the variation characteristics of chest compression (compression ratio). A biological rib target was constructed by combining porcine thorax and ballistic gelatin. With a falling weight as the impact source, a high-speed photography system was combined to explore the impact process. The impact process of the falling weight was similar to that of a bullet and the maximum depth of indentation deformation in soft protection reached 37 mm. An increase in the speed of the falling weight significantly increased the deformation of the chest cavity, with a maximum compression rate of 22.5% when the impact velocity was 5.602 m/s. According to the analysis with the Viscous Criteria (VC), the VC values corresponding to the impact velocity of 3.779 m/s (VCmax=1.724 m/s) and 5.602 m/s (VCmax=2.276 m/s) both corresponded to AIS2 or 3 injuries, with an injury probability of approximately 100%. Low-speed blunt impact studies can be carried out by combining falling weight impact with biological rib targets, whereas there are differences in the corresponding AIS grades when chest compression rate, chest compression and Viscous Criteria are used as the measurement basis.

Key words

behind armor blunt trauma / falling weight impact / rib target / high-speed photography / chest compression rate / viscous criteria

Cite this article

Download Citations
ZHOU Zhenlu, AN Shuo, XIONG Manman, MA Xuejiao, DU Qinglei, LU Haitao, ZANG Liwei, QIN Bin. Behind Armor Blunt Trauma Response of Biological Rib Targets by Falling Weight Impact[J]. Equipment Environmental Engineering. 2025, 22(7): 36-43 https://doi.org/10.7643/issn.1672-9242.2025.07.005

References

[1] 姜荃, 温垚珂, 张俊斌, 等. 步枪弹对有防护明胶靶标钝击作用传递模型研究[J]. 兵器装备工程学报, 2021, 42(4): 31-36.
JIANG Q, WEN Y K, ZHANG J B, et al.Research on Transfer Model of Rifle Projectile Blunt Impact on Protected Gelatin Target[J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 31-36.
[2] 唐刘建. 人体靶标的制作与软防护下钝击效应研究[D]. 南京: 南京理工大学, 2018.
TANG L J.Study on the Making of Human Target and Blunt Impact Effect under Soft Protection[D]. Nanjing: Nanjing University of Science and Technology, 2018.
[3] 郑比邻. 枪弹冲击人体防护下模拟肋骨靶标应变测试技术研究[D]. 太原: 中北大学, 2023.
ZHENG B L.Research on Strain Testing Technology of simulated Rib Target under Bullet Impact Protection[D]. Taiyuan: North University of China, 2023.
[4] 张文杰, 王刚. 枪弹钝击防弹衣后人体胸骨的非贯穿性损伤研究[J]. 机械设计与制造工程, 2018, 47(2): 105-108.
ZHANG W J, WANG G.The Study on the Non-Penetrating Injury of the Human Breast Bone after the Blunt Impact of the Bullet[J]. Machine Design and Manufacturing Engineering, 2018, 47(2): 105-108.
[5] 郑浩, 温垚珂, 闫文敏, 等. 基于防弹衣背面动态变形的钝击伤评估[J]. 兵器装备工程学报, 2021, 42(6): 129-132.
ZHENG H, WEN Y K, YAN W M, et al.Blunt Injury Assessment Based on Dynamic back Face Deformation of Body Armor[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 129-132.
[6] 徐彬. 高速冲击测试用人体仿生胸部模块研究[D]. 长沙: 湖南大学, 2022.
XU B.Research on Bionic Human Chest Module for High-Speed Impact Test[D]. Changsha: Hunan University, 2022.
[7] PINKOS J, STEMPIEN Z, SMĘDRA A. Experimental Analysis of Ballistic Trauma in a Human Body Protected with 30 Layer Packages Made of Biaxial and Triaxial Kevlar® 29 Fabrics[J]. Defence Technology, 2023, 21: 73-87.
[8] YAN W M, YAO X F, WANG Y S, et al.Experimental Study of the Mechanical Response of a Physical Human Surrogate Thoracic Model Impacted by a Rubber Ball[J]. Journal of Physics: Conference Series, 2020, 1507(10): 102032.
[9] 王辛桐, 汪送. 防暴动能弹终点效应测试靶标研究进展[J]. 测试技术学报, 2022, 36(6): 468-478.
WANG X T, WANG S.Review on Targets of Anti-Riot Kinetic Energy Projectiles Blunt Ballistic Impact[J]. Journal of Test and Measurement Technology, 2022, 36(6): 468-478.
[10] 黄珊, 徐诚, 王双平, 等. 手枪弹冲击下有防护生物靶标多参数测量与分析[J]. 医用生物力学, 2014, 29(6): 567-571.
HUANG S, XU C, WANG S P, et al.Comprehensive Measurement and Analysis on Multi-Parameters of Armored Biological Target under Pistol Impact[J]. Journal of Medical Biomechanics, 2014, 29(6): 567-571.
[11] 曾鑫, 周克栋, 赫雷, 等. 非侵彻条件下猪体和明胶靶内压力衰减试验研究[J]. 振动与冲击, 2014, 33(8): 96-99.
ZENG X, ZHOU K D, HE L, et al.Test for Pressure Attenuation in Targets of Landrace and Gelatin under Non-Penetration Condition[J]. Journal of Vibration and Shock, 2014, 33(8): 96-99.
[12] YOGANANDAN N, SHAH A, KOSER J, et al.Behind Armor Blunt Trauma: Liver Injuries Using a Live Animal Model[J]. Military Medicine, 2024, 189(Suppl 3): 659-664.
[13] 黄珊. 轻武器典型杀伤效应测试与分析研究[D]. 南京: 南京理工大学, 2018.
HUANG S.Test and Analysis of Typical Killing Effects of Light Weapons[D]. Nanjing: Nanjing University of Science and Technology, 2018.
[14] SHEN W X, NIU Y Q, STUHMILLER J H.Biomechanically Based Criteria for Rib Fractures Induced by High-Speed Impact[J]. The Journal of Trauma, 2005, 58(3): 538-545.
[15] SHEN W X, NIU Y Q, BYKANOVA L, et al.Characterizing the Interaction among Bullet, Body Armor, and Human and Surrogate Targets[J]. Journal of Biomechanical Engineering, 2010, 132(12): 121001.
[16] TAWELL M G.Kinetic Energy less Lethal Weapons and Their Associated Blunt Trauma Injuries[D]. Cranfield: Cranfield University, 2010.
[17] 庞自强. 轻小型无人机水平碰撞工况下成人与儿童胸部响应及对比分析研究[D]. 北京: 北京交通大学, 2021.
PANG Z Q.Chest Response and Comparative Analysis of Adults and Children under Horizontal Collision of Light and Small Unmanned Aerial Vehicles[D]. Beijing: Beijing Jiaotong University, 2021.
[18] EPPINGER R, SUN E, BANDAK F, et al.Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems-I[R]. Washington: National Highway Traffic Safety Administration, 1999.
[19] 陈嘉鑫. 基于中国体征的正碰假人仿真研究与应用[D]. 长春: 吉林大学, 2021.
CHEN J X.Simulation Research and Application of Head-on Dummy Based on China Signs[D]. Changchun: Jilin University, 2021.
[20] VIANO D C, LAU I V.A Viscous Tolerance Criterion for Soft Tissue Injury Assessment[J]. Journal of Biomechanics, 1988, 21(5): 387-399.
[21] KROELL C K, POPE M E, VIANO D C, et al.Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine[C]// SAE Technical Paper Series. [s. l.]: SAE International, 1981.
[22] VIANO D, LAU I.Thoracic Impact: A Viscous Tolerance Criterion[C]// Proceedings of the Tenth International Technical Conference on Experimental Safety Vehicles, [s. l.]: [s. n.], 1985.
[23] 孙映斌, 汪送. 基于粘性标准的防暴动能弹冲击损伤评估综述[J]. 火炮发射与控制学报, 2022, 43(5): 90-96.
SUN Y B, WANG S.Review on Impact Damage Assessment of Kinetic Energy Riot Control Projectiles Based on the Viscous Criterion[J]. Journal of Gun Launch & Control, 2022, 43(5): 90-96.
[24] LAU I V, VIANO D C.The Viscous Criterion-Bases and Application of an Injury Severity Index for Soft Tissues[C]// Proceedings of the 30th Stapp Car Crash Conference. Warrendale: Society of Automotive Engineers, 1986.
[25] CANNON L.Behind Armour Blunt Trauma—An Emerging Problem[J]. Journal of the Royal Army Medical Corps, 2001, 147(1): 87-96.
[26] BIR C A.The Evaluation of Blunt Ballistic Impacts of the Thorax[D]. Detroit: Wayne State University, 2000.
[27] 王家伟. 人体胸部有限元模型建模及无人机碰撞工况损伤研究[D]. 北京: 北京交通大学, 2020.
WANG J W.Modeling of Finite Element Model of Human Chest and Study on Damage of UAV in Collision Condition[D]. Beijing: Beijing Jiaotong University, 2020.
[28] BIR C, VIANO D C.Design and Injury Assessment Criteria for Blunt Ballistic Impacts[J]. The Journal of Trauma, 2004, 57(6): 1218-1224.

Funding

Science and Technology on Transient Impact Laboratory Foundation Fund (6142606231104)
PDF(24242 KB)

Accesses

Citation

Detail

Sections
Recommended

/