Failure Analysis of Firing Pins in Small-caliber Automatic Rifles Under Low-temperature Conditions

LI Junan, QIAO Ziping, LEI Qinghua, XU Lining, ZHANG He

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 59-66.

PDF(12376 KB)
PDF(12376 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 59-66. DOI: 10.7643/issn.1672-9242.2025.07.008
Special Topic—Application and Collaborative Evaluation Technology of Light Weapons in Complex Environments

Failure Analysis of Firing Pins in Small-caliber Automatic Rifles Under Low-temperature Conditions

  • LI Junan1, QIAO Ziping1, LEI Qinghua2, XU Lining3, ZHANG He1,*
Author information +
History +

Abstract

The work aims to investigate the fracture failure of firing pins observed during low-temperature endurance testing of small-caliber automatic rifles, conduct impact fatigue failure analysis, and propose design improvements for firing pins. Macroscopic and microscopic examinations were performed on fractured firing pins from low-temperature testing. Additionally, mechanical property tests were conducted on the firing pin material under both ambient and low-temperature conditions to determine the failure mechanisms and performance characteristics in low-temperature environments. Material testing revealed that the firing pins exhibited higher tensile strength and improved low-cycle fatigue life at low temperature, while its impact toughness decreased significantly. Surface and fracture analysis showed that the firing pin tip had a rough surface with distinct parallel circumferential grooves. The study demonstrated a positive correlation between the firing pin material's tensile strength and low-cycle fatigue life under low-temperature conditions. However, impact toughness decreased by 29.3 % compared with that under ambient temperature, while maintaining a positive correlation with impact fatigue life. The observed surface roughness and machining imperfections created stress concentrations that accelerated crack propagation, reducing service life. In conclusion, for firearms operating in sustained low-temperature environments, it is recommended to select firing pin materials that maintain adequate ambient-temperature strength while exhibiting superior low-temperature impact toughness to ensure reliable ignition performance.

Key words

low temperature environment / firearm parts / fractured firing pin / impact fatigue / material properties / failure analysis

Cite this article

Download Citations
LI Junan, QIAO Ziping, LEI Qinghua, XU Lining, ZHANG He. Failure Analysis of Firing Pins in Small-caliber Automatic Rifles Under Low-temperature Conditions[J]. Equipment Environmental Engineering. 2025, 22(7): 59-66 https://doi.org/10.7643/issn.1672-9242.2025.07.008

References

[1] KOGA N, NOGUCHI M, WATANABE C.Low-temperature Tensile Properties, Deformation and Fracture Behaviors in the Ferrite and Austenite Duplex Stainless Steel with Various Grain Sizes[J]. Materials Science and Engineering: A, 2023, 880: 145354.
[2] YAN J B, GENG Y T, XIE P, et al.Low-temperature Mechanical Properties of Stainless Steel 316L: Tests and Constitutive Models[J]. Construction and Building Materials, 2022, 343: 128122.
[3] YAN J B, FENG J Y, LUO Y B, et al.Compression Behaviour of Stainless-steel Stub Square Tubular Columns at Cold-region Low Temperatures[J]. Journal of Constructional Steel Research, 2021, 187: 106984.
[4] GARDNER L, TALJA A, BADDOO N R.Structural Design of High-strength Austenitic Stainless Steel[J]. Thin-walled Structures, 2006, 44(5): 517-528.
[5] GARION C, SKOCZEŃ B, SGOBBA S.Constitutive Modelling and Identification of Parameters of the Plastic Strain-induced Martensitic Transformation in 316L Stainless Steel at Cryogenic Temperatures[J]. International Journal of Plasticity, 2006, 22(7): 1234-1264.
[6] WANG Y H, WANG R, TIAN Y W, et al.Impact Performance of Hollow Steel Tubes under Low Temperatures[J]. Journal of Constructional Steel Research, 2025, 229: 109534.
[7] LIU Q F, YAN J B, LIN X C.Axial Compression Behavior of Q690E/Q960E High-strength Steel Tubes at Low Temperatures[J]. Journal of Constructional Steel Research, 2023, 210: 108091.
[8] YAN J B, LUO Y L, LIN X C, et al.Effects of the Arctic Low Temperature on Mechanical Properties of Q690 and Q960 High-strength Steels[J]. Construction and Building Materials, 2021, 300: 124022.
[9] CHEN M H, YAN J B.Stainless-steel Square Hollow Tubes Subjected to Low-temperature Eccentric Compression Loads[J]. Journal of Constructional Steel Research, 2024, 212: 108218.
[10] QIAO K Q, LIU Z J, SUN Z Y, et al.Effects of Low Temperature Overload and Cycling Temperature on Fatigue Crack Growth Behavior of Ship Steels in Arctic Environments[J]. Ocean Engineering, 2023, 288: 116090.
[11] LIANG H, ZHAN R, WANG D P, et al.Fatigue Crack Growth under Overload/Underload in Different Strength Structural Steels[J]. Journal of Constructional Steel Research, 2022, 192: 107213.
[12] TONG L W, NIU L C, REN Z Z, et al.Experimental Research on Fatigue Performance of High-strength Structural Steel Series[J]. Journal of Constructional Steel Research, 2021, 183: 106743.
[13] WANG X, ZHU Z D, WANG H J, et al.Characterization of Eccentric Internal Crack Expansion in Brittle Materials at Low Temperature[J]. Theoretical and Applied Fracture Mechanics, 2025, 138: 104895.
[14] LI X Y, WANG H J, TANG L, et al.3D Internal Crack Propagation in Brittle Solids under Non-Uniform Temperature Field: Experimental and Numerical Simulation[J]. Engineering Fracture Mechanics, 2024, 307: 110305.
[15] 李奇聪, 司俊, 金鑫, 等. 316L不锈钢低温力学性能研究与寿命预测[J]. 热加工工艺, 2023, 52(4): 27-31.
LI Q C, SI J, JIN X, et al.Study on Low-temperature Mechanical Properties and Life Prediction of 316L Stainless Steel[J]. Hot Working Technology, 2023, 52(4): 27-31.
[16] 宋月鹏, 刘自平, 陈义祥, 等. 机械研磨对316L不锈钢表面及其低温渗铝层性能的影响[J]. 材料热处理学报, 2016, 37(6): 204-209.
SONG Y P, LIU Z P, CHEN Y X, et al.Effect of Surface Mechanical Attrition on Surface and Properties of Low Temperature Aluminized Layer of 316L Stainless Steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(6): 204-209.
[17] 史术华, 高擎, 钱亚军. 低温回火对低碳马氏体超高强钢组织及力学性能的影响[J]. 矿冶工程, 2023, 43(6): 174-178.
SHI S H, GAO Q, QIAN Y J.Effect of Low-Temperature Tempering on Microstructure and Mechanical Properties of Low-carbon Martenstic Ultra-High Strength Steel[J]. Mining and Metallurgical Engineering, 2023, 43(6): 174-178.
[18] 汤隽劼, 喻异双, 胡斌, 等. 增材制造高强钢中的马氏体组织与马氏体相变[J]. 钢铁, 2024, 59(6): 83-93.
TANG J J, YU Y S, HU B, et al.Martensite Microstructure and Martensitic Transformation of Additive Manufacturing High-Strength Steel[J]. Iron & Steel, 2024, 59(6): 83-93.
[19] 高杰, 鞠晓臣, 柳恒, 等. 低温环境下Q690高强钢断裂韧性参数的试验与数值研究[J]. 中国造船, 2023, 64(3): 68-79.
GAO J, JU X C, LIU H, et al.Experimental and Numerical Investigation of Fracture Toughness Parameters of Q690 High-Strength Steel for Application in Harsh Environment[J]. Shipbuilding of China, 2023, 64(3): 68-79.
[20] 李鹤飞, 张鹏, 张哲峰. 高强钢断裂韧性与疲劳裂纹扩展评价方法研究进展[J]. 机械工程学报, 2023, 59(16): 18-31.
LI H F, ZHANG P, ZHANG Z F.Research Progress on Evaluation Methods of Fracture Toughness and Fatigue Crack Growth in High-Strength Steel[J]. Journal of Mechanical Engineering, 2023, 59(16): 18-31.
[21] 郭强, 迟克刚. 30CrMnSiA钢结构件低温断裂失效分析[J]. 金属热处理, 2023, 48(8): 276-280.
GUO Q, CHI K G.Low-temperature Fracture Failure Analysis of 30CrMnSiA Steel Structural Part[J]. Heat Treatment of Metals, 2023, 48(8): 276-280.
[22] 刘泉兵, 刘宗德, 郭胜洋, 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
LIU Q B, LIU Z D, GUO S Y, et al.Galvanic Corrosion Behavior of 5083 Al-Alloy and 30CrMnSiA Steel in NaCl Solutions[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 883-891.
[23] 张永新, 范昌增, 许泽建, 等. 球墨铸铁在低温及冲击载荷下的韧脆转变行为[J/OL]. 爆炸与冲击, 2025: 1-13(2024-03-29). https://link.cnki.net/urlid/51.1148.O3.20240328.1523.014.
ZHANG Y X, FAN C Z, XU Z J, et al. Ductile-brittle Transition Behavior of Nodular Cast Iron under Low Temperature and Impact Loading[J]. Explosion and Shock Waves, 2025: 1-13(2024-03-29). https://link.cnki.net/urlid/51.1148.O3.20240328.1523.014.
[24] 王杰, 韩传龙, 王睿泱, 等. 含铜奥氏体不锈钢低温环境下成形性能及微观组织的研究[J]. 精密成形工程, 2025, 17(1): 87-96.
WANG J, HAN C L, WANG R Y, et al.Forming Properties and Microstructure of Copper-Containing Austenitic Stainless Steel under Low Temperature Environment[J]. Journal of Netshape Forming Engineering, 2025, 17(1): 87-96.
[25] 王凡, 孙振栋, 刘国强, 等. 基于扩展GTN-Thomason模型的Fe-Cr-Mo-Mn钢韧性断裂行为预测[J]. 锻压技术, 2024, 49(7): 235-242.
WANG F, SUN Z D, LIU G Q, et al.Prediction of Ductile Fracture Behavior for Fe-Cr-Mo-Mn Steel Based on Extended GTN-Thomason Model[J]. Forging & Stamping Technology, 2024, 49(7): 235-242.
[26] 叶文辉, 乔自平, 李君安, 等. 低温环境对枪械零件冲击疲劳的影响研究[J]. 兵器装备工程学报, 2024, 45(S1): 217-222.
YE W H, QIAO Z P, LI J A, et al.Study on the Influence of Low Temperature Environment on Impact Fatigue of Gun Parts[J]. Journal of Ordnance Equipment Engineering, 2024, 45(S1): 217-222.
PDF(12376 KB)

Accesses

Citation

Detail

Sections
Recommended

/