Analysis of Electromagnetic Shielding Efficiency of Ammunition Packaging for High-speed Railway Transportation

YANG Qingxi, WANGBo, JIN Yinan, ZHANG Jinbao, BAIYu, XU Guoxing

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 67-73.

PDF(1709 KB)
PDF(1709 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 67-73. DOI: 10.7643/issn.1672-9242.2025.07.009
Weapons Equipment

Analysis of Electromagnetic Shielding Efficiency of Ammunition Packaging for High-speed Railway Transportation

  • YANG Qingxi1, WANGBo1,*, JIN Yinan1, ZHANG Jinbao2, BAIYu1, XU Guoxing1
Author information +
History +

Abstract

The work aims to analyze the electromagnetic environment of ammunition packaging inside the train in order to solve the electromagnetic safety problem of ammunition high-speed railway transportation. The electromagnetic shielding models of high-speed train body and typical ammunition packaging were established respectively. The shielding efficiency of typical ammunition packaging materials was analyzed by simulation, and then the shielding efficiency of typical ammunition packaging combination was analyzed by experiments. The results showed that in the frequency range of 30MHz~1.5GHz, the shielding efficiency of 2mm thick aluminum metal packaging materials was more than 88dB, while non-metallic packaging materials had no shielding efficiency, and the shielding efficiency could reach 55dB after adding aluminum plastic bags. In conclusion,the shielding efficiency of electromagnetic sensitive ammunition can be improved by aluminum-plastic bags and aluminum packing boxes when it is transported by railway at high speed.

Key words

ammunition packaging / railways / high-speed transportation / electromagnetic environment / shielding efficiency / simulation analysis

Cite this article

Download Citations
YANG Qingxi, WANGBo, JIN Yinan, ZHANG Jinbao, BAIYu, XU Guoxing. Analysis of Electromagnetic Shielding Efficiency of Ammunition Packaging for High-speed Railway Transportation[J]. Equipment Environmental Engineering. 2025, 22(7): 67-73 https://doi.org/10.7643/issn.1672-9242.2025.07.009

References

[1] 闻映红. 高速铁路系统电磁兼容与电磁安全现状及展望[J]. 安全与电磁兼容, 2018(6): 9-10.
WEN Y H.Outlook on Electromagnetic Compatibility Technology and Electromagnetism Security of China High-Speed Railway System[J]. Safety & EMC, 2018(6): 9-10.
[2] 余俊, 陈焕玉, 周毅, 等. 动车组内部电磁环境测试标准研究[J]. 铁道机车车辆, 2018, 38(1): 31-33.
YU J, CHEN H Y, ZHOU Y, et al.Research on Test Standard of Internal Electromagnetic Environment EMU[J]. Railway Locomotive & Car, 2018, 38(1): 31-33.
[3] 郝明远, 高峰, 王艳琴, 等. 高速动车组车厢内电磁环境测试研究[J]. 中国铁路, 2013(9): 64-67.
HAO M Y, GAO F, WANG Y Q, et al.Test and Research on Electromagnetic Environment in the Train Compartment of High-Speed EMU[J]. Chinese Railways, 2013(9): 64-67.
[4] 齐彪, 周安德, 陈三猛, 等. 动车组牵引变压器电磁噪声优化及声音品质分析[J]. 电力机车与城轨车辆, 2024, 47(1): 33-37.
QI B, ZHOU A D, CHEN S M, et al.Optimization and Sound Quality Analysis for Electromagnetic Noise of EMU Traction Transformer[J]. Electric Locomotives & Mass Transit Vehicles, 2024, 47(1): 33-37.
[5] 金开礼, 李相强, 张健穹, 等. 高速动车组牵引变流器EMI建模仿真研究[J]. 铁道机车车辆, 2023, 43(1): 63-69.
JIN K L, LI X Q, ZHANG J Q, et al.Research on EMI Modeling and Simulation of Traction Converter for High-Speed EMU[J]. Railway Locomotive & Car, 2023, 43(1): 63-69.
[6] 杨德勇, 朱柄全, 陈颖, 等. 高速动车组牵引系统电磁干扰分析及抑制方法研究[J]. 机车电传动, 2022(6): 87-94.
YANG D Y, ZHU B Q, CHEN Y, et al.A Study on Electromagnetic Interference Analysis and Suppression Method for Traction System of High-Speed EMU[J]. Electric Drive for Locomotives, 2022(6): 87-94.
[7] 苏发明, 余俊, 黄金, 等. 动车组、电力机车及地铁列车的电磁骚扰发射测试系统不确定度研究[J]. 铁道机车车辆, 2022, 42(3): 23-27.
SU F M, YU J, HUANG J, et al.Research on Uncertainty of Electromagnetic Radiated Emission Test System of EMU, Electric Locomotive and Subway Train[J]. Railway Locomotive & Car, 2022, 42(3): 23-27.
[8] 张余峰, 徐凯歌. 高速列车线性涡流制动系统电磁发射特性研究[J]. 电力机车与城轨车辆, 2023, 46(4): 29-34.
ZHANG Y F, XU K G.Electromagnetic Emission Characteristics of Linear Eddy Current Braking System of High Speed Train[J]. Electric Locomotives & Mass Transit Vehicles, 2023, 46(4): 29-34.
[9] 胡小龙, 李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究[J]. 电子测量技术, 2022, 45(5): 80-85.
HU X L, LI C X.The Research on the Surface Transfer Impedance and Shielding Effectiveness of High-Speed Railway Shielded Cable[J]. Electronic Measurement Technology, 2022, 45(5): 80-85.
[10] 刘志坤, 贾冬梅. 高速动车组电磁兼容技术仿真分析[J]. 工业技术创新, 2017, 4(1): 56-58.
LIU Z K, JIA D M.Simulation Analysis on EMC Technology for High Speed EMUs[J]. Industrial Technology Innovation, 2017, 4(1): 56-58.
[11] 孙文东, 霸书红, 陈慧敏. 脉冲激光发射模块电磁屏蔽效能仿真分析[J]. 装备环境工程, 2022, 19(11): 54-61.
SUN W D, BA S H, CHEN H M.Simulation Analysis of Electromagnetic Shielding Effectiveness on Pulse Laser Transmitting Module[J]. Equipment Environmental Engineering, 2022, 19(11): 54-61.
[12] 戚俊成, 高子博, 马博翔, 等. 强电磁干扰下引信体屏蔽效能特性[J]. 装备环境工程, 2024, 21(8): 9-16.
QI J C, GAO Z B, MA B X, et al.Shielding Efficiency Characteristics of Fuze under Strong Electromagnetic Interference[J]. Equipment Environmental Engineering, 2024, 21(8): 9-16.
[13] 段世非, 孙德强, 谭一, 等. 精确制导航空弹药电磁防护包装研究[J]. 包装工程, 2020, 41(15): 70-74.
DUAN S F, SUN D Q, TAN Y, et al.Electromagnetic Shielding Packaging of Precision-Guided Aviation Ammunition[J]. Packaging Engineering, 2020, 41(15): 70-74.
[14] 靳廷甲. 吹气法泡沫铝的电磁屏蔽性能[J]. 轻金属, 2025(1): 55-59.
JIN T J.Electromagnetic Shielding Performance of Aluminum Foams by Gas Injection Method[J]. Light Metals, 2025(1): 55-59.
[15] 刘长金, 吴洁, 涂文杰, 等. 导电高分子复合材料电磁屏蔽性能研究现状与展望[J]. 化工新型材料, 2024, 52(S2): 118-123.
LIU C J, WU J, TU W J, et al.Research Status and Prospect of Electromagnetic Shielding Performance of Conductive Polymer Composites[J]. New Chemical Materials, 2024, 52(S2): 118-123.
[16] 张苗, 曹高涛, 俞丹, 等. 电磁屏蔽镀层及涂层织物的屏蔽机制与研究进展[J]. 毛纺科技, 2024, 52(10): 138-145.
ZHANG M, CAO G T, YU D, et al.Shielding Mechanism and Research Progress of Electromagnetic Shielding Plating/Coating Fabrics[J]. Wool Textile Journal, 2024, 52(10): 138-145.
[17] 王巍, 姚恺, 李黎明. 弹药公路运输安全评估研究综述[J]. 装备环境工程, 2022, 19(4): 28-35.
WANG W, YAO K, LI L M.Safety Assessment of Road Transportation of Ammunition[J]. Equipment Environmental Engineering, 2022, 19(4): 28-35.
[18] 王小瑞, 朱涛, 张敬科, 等. 服役高速列车车体铝合金材料率相关剩余强度预测[J]. 中南大学学报(自然科学版), 2024, 55(5): 2000-2010.
WANG X R, ZHU T, ZHANG J K, et al.Prediction of Rate-Dependent Residual Strength of Aluminum Alloy of Car Body for In-Service High-Speed Trains[J]. Journal of Central South University (Science and Technology), 2024, 55(5): 2000-2010.
[19] 周月忠, 傅双波, 王永刚, 等. 高速动车组中央控制单元抗电磁干扰能力研究分析[J]. 现代城市轨道交通, 2023(9): 34-40.
ZHOU Y Z, FU S B, WANG Y G, et al.Research and Analysis on the Anti-EMI Ability of the Central Control Unit of EMUs[J]. Modern Urban Transit, 2023(9): 34-40.
[20] 李虹, 张冲默, 王作兴, 等. 高速列车供电系统电磁干扰形成机理与抑制方法综述[J]. 中国电机工程学报, 2023, 43(8): 3137-3154.
LI H, ZHANG C M, WANG Z X, et al.Review of EMI Mechanism and Suppression Methods in Power Supply System of High-Speed Train[J]. Proceedings of the CSEE, 2023, 43(8): 3137-3154.
[21] 刘正涛, 胡建华, 张报云, 等. 我国弹药包装防护设计研究现状[J]. 包装工程, 2023, 44(17): 291-297.
LIU Z T, HU J H, ZHANG B Y, et al.Research Status of Ammunition Packaging Protection Design in China[J]. Packaging Engineering, 2023, 44(17): 291-297.
[22] 许毅辉, 杨豪杰. 弹药包装防护材料的研究现状及发展[J]. 上海包装, 2023(5): 13-15.
XU Y H, YANG H J.Research Status and Development of Protective Materials for Ammunition Packaging[J]. Shanghai Packaging, 2023(5): 13-15.
[23] 刘刚, 张勇. 弹药包装材料现状与发展趋势及其电磁防护需求[J]. 包装工程, 2009, 30(12): 121-123.
LIU G, ZHANG Y. Present Situation, Development Trends,Electromagnetic Protection Requirements of Ammunition Packaging Material[J]. Packaging Engineering, 2009, 30(12): 121-123.
[24] 赵世宜, 陈金旺, 王胜, 等. 弹药运输中的静电危害与防护对策研究[J]. 装备环境工程, 2011, 8(3): 66-69.
ZHAO S Y, CHEN J W, WANG S, et al.Research on the Countermeasures for Electrostatic Hazard and Its Prevention in Ammunition Transportation[J]. Equipment Environmental Engineering, 2011, 8(3): 66-69.
[25] 李颖, 肖敏, 杨万均, 等. 某弹药包装筒用改性ABS塑料贮存寿命评估研究[J]. 装备环境工程, 2013, 10(3): 5-7.
LI Y, XIAO M, YANG W J, et al.Storage Life Evaluation of Modified ABS Plastic for Ammunition Packaging[J]. Equipment Environmental Engineering, 2013, 10(3): 5-7.
PDF(1709 KB)

Accesses

Citation

Detail

Sections
Recommended

/