Research and Application of HVOF Sprayed NiCrFeMo Coatings

WU Lei, WANG Li, XU Feng, ZHANG Xiaofeng, LI Hongying, HUANG Xun, CHENG Siyuan, LIU Yapeng

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 96-104.

PDF(2656 KB)
PDF(2656 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 96-104. DOI: 10.7643/issn.1672-9242.2025.07.013
Aviation and Aerospace Equipment

Research and Application of HVOF Sprayed NiCrFeMo Coatings

  • WU Lei1,2, WANG Li2,*, XU Feng1, ZHANG Xiaofeng3, LI Hongying2, HUANG Xun2, CHENG Siyuan2, LIU Yapeng2
Author information +
History +

Abstract

The work aims to address the premature failure and economic losses of high-temperature alloy components in aviation engines due to substrate damage by conducting research on HVOF sprayed NiCrFeMo coatings. With a certain type of disc component from an aviation engine as the target for thermal spray repair, a three-factor and three-level orthogonal experiment was conducted to study the impact of key HVOF process parameters on coating performance. Minitab was used to evaluate the process capability index (CPK) of the optimal process parameters. When the hydrogen flow rate was 33.394 m3/h, the oxygen flow rate was 13.584 m3/h, and the spraying distance was 250 mm, these parameters were the best for repair and the coating had a uniform and dense structure, with a bonding strength to the substrate exceeding 62 MPa, and the process capability index was greater than 1.33, indicating high process stability. Using the optimal process parameters from this study to repair a defective disc component from an aviation engine yielded excellent results. After over 100 hours of field service, the coating showed no signs of cracking or peeling, and it bonded well to the substrate. The thickness change in the repaired area was less than 1%, and surface wear quality loss was minimal. HVOF can effectively repair defective high-temperature alloy components in aviation engines, ensuring high process stability and significantly extending the service life of the components.

Key words

HVOF / repair / NiCrFeMo / CPK / high-temperature alloy / bonding strength / aviation engines

Cite this article

Download Citations
WU Lei, WANG Li, XU Feng, ZHANG Xiaofeng, LI Hongying, HUANG Xun, CHENG Siyuan, LIU Yapeng. Research and Application of HVOF Sprayed NiCrFeMo Coatings[J]. Equipment Environmental Engineering. 2025, 22(7): 96-104 https://doi.org/10.7643/issn.1672-9242.2025.07.013

References

[1] FU L M, SONG Z A, YANG Q G, et al.Microstructure Evolution and Tensile Properties Behavior during Aging Temperature of CoCrFeNi-Based High Entropy Alloys[J]. Intermetallics, 2025, 176: 108560.
[2] 陈超越, 王江, 王瑞鑫, 等. 航空发动机及燃气轮机用关键材料的激光增材制造研究进展[J]. 科技导报, 2023, 41(5): 34-48.
CHEN C Y, WANG J, WANG R X, et al.Research Progress and Prospect of Additive Manufacturing of Key Materials for Aeroengines and Gas Turbines[J]. Science & Technology Review, 2023, 41(5): 34-48.
[3] WAHL J B, HARRIS K.Advanced Ni Base Superalloys for Small Gas Turbines[J]. Canadian Metallurgical Quarterly, 2011, 50(3): 207-214.
[4] CHENG M W, SHI D Q, YANG X G, et al.Investigation of Creep Damage Accumulation under Variable Loading Conditions in Nickel-Based Single Crystal Superalloys[J]. Materials Science and Engineering: A, 2024, 914: 147164.
[5] ZHAO R H, LI L L, NIE Z H, et al.Effects of Pre-Heating Induced Interfacial Diffusion on Microstructure and Related Mechanical Properties of Direct Laser Metal Deposited Inconel 625 Superalloy on a Cu-Cr-Zr Substrate[J]. Materials Science and Engineering: A, 2025, 920: 147551.
[6] 高玉魁, 王瑞, 陶雪菲. 高速冲击表面处理对金属材料表面完整性的影响[J]. 航空制造技术, 2022, 65(21): 14-27.
GAO Y K, WANG R, TAO X F.Effects of High Speed Impact Surface Treatment on Surface Integrity of Metallic Materials[J]. Aeronautical Manufacturing Technology, 2022, 65(21): 14-27.
[7] 李金宏, 刘小刚, 杨默晗. 高温合金电子束焊接及热处理过程残余应力模拟与验证[J/OL]. 航空动力学报, 2024: 1-10. (2024-12-17). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HKDI20241216001&dbname=CJFD&dbcode=CJFQ.
LI J H, LIU X G, YANG M H. Simulation and Verification of Residual Stress during Electron Beam Welding and Heat Treatment of Superalloy[J/OL]. China Industrial Economics, 2024: 1-10. (2024-12-17). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HKDI20241216001&dbname=CJFD&dbcode=CJFQ.
[8] 佘律波. 航空发动机环形件电子束焊接应力与变形有限元分析[D]. 南京: 南京航空航天大学, 2019.
SHE L B.Finite Element Analysis of Stress and Deformation in Electron Beam Welding of Aeroengine Ring Parts[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[9] 闫冬. 基于PDCA循环的焊后热处理工艺开发研究[D]. 济南: 山东大学, 2017.
YAN D.Development and Research of Post-Weld Heat Treatment Process Based on PDCA Cycle[D]. Jinan: Shandong University, 2017.
[10] 朱莎莎, 张继亮, 张力, 等. 双相不锈钢复合钢板容器的焊接工艺研究[J]. 大型铸锻件, 2020(4): 6-8.
ZHU S S, ZHANG J L, ZHANG L, et al.Study on Welding Technology of Vessel with Duplex Stainless Steel Composite Plates[J]. Heavy Casting and Forging, 2020(4): 6-8.
[11] 井志成. 焊后热处理及Ta元素对CLF-1钢激光焊接接头组织及性能影响[D]. 沈阳: 沈阳工业大学, 2020.
JING Z C.Effect of Post-Weld Heat Treatment and Ta Element on Microstructure and Properties of Laser Welded Joint of CLF-1 Steel[D]. Shenyang: Shenyang University of Technology, 2020.
[12] 李庆伦, 崔永植, 江红, 等. 低镍Fe-Ni合金电镀修复强化技术的研究[J]. 设备管理&维修, 1998(10): 21-22.
LI Q L, CUI Y Z, JIANG H, et al.Study on Strengthening Technology of Electroplating Repair of Low Nickel Fe-Ni Alloy[J]. Plant Maintenance Engineering, 1998(10): 21-22.
[13] 李成龙, 詹华, 刘吉飞, 等. 用HVAF+PVD复合技术替代镀铬技术处理钛合金表面的研究[J]. 电镀与涂饰, 2020, 39(20): 1381-1385.
LI C L, ZHAN H, LIU J F, et al.Study on Substitution of Chrome Plating by Combination of HVAF and PVD for Treating Titanium Alloy Surface[J]. Electroplating & Finishing, 2020, 39(20): 1381-1385.
[14] 孟保利, 高晓颖, 郑超, 等. 多次电镀铬对30CrMnSiNi2A疲劳寿命和氢脆性能的影响[J]. 电镀与精饰, 2023, 45(5): 65-70.
MENG B L, GAO X Y, ZHENG C, et al.Influence of Repeated Chromium Plating on Fatigue Life and Hydrogen Embrittlement Performance of 30CrMnSiNi2A[J]. Plating and Finishing, 2023, 45(5): 65-70.
[15] WEI J J, COJOCARU C, AGHASIBEIG M, et al.Deposition, Microstructure and Hardness of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Coatings by Cold Spray, HVOF, and Plasma Spray[J]. Surface and Coatings Technology, 2024, 494: 131442.
[16] 杨佳晖, 牟治国, 陈利刚. 超音速火焰喷涂T800涂层的金相评估与性能分析[J]. 机械工程与自动化, 2019(1): 136-138.
YANG J H, MOU Z G, CHEN L G.Metallographic Evaluation and Performance Analysis of HVOF T800 High Temperature Hard Coating[J]. Mechanical Engineering & Automation, 2019(1): 136-138.
[17] MEDABALIMI S, HEBBALE A M, GUDALA S, et al.Studies on High Temperature Erosion Behavior of HVOF-Sprayed (CR3C2-NiCr)Si and WC-Co/NiCrAlY Composite Coatings[J]. International Journal of Refractory Metals and Hard Materials, 2025, 127: 106970.
[18] 张陆, 宋长虹. 航空行业热喷涂技术标准现状及发展探讨[J]. 热喷涂技术, 2024, 16(3): 50-54.
ZHANG L, SONG C H.Current Status of and Development Discussion on Thermal Spray Technology Standards in the Aviation Industry[J]. Thermal Spray Technology, 2024, 16(3): 50-54.
[19] DONGMO E, WENZELBURGER M, GADOW R.Analysis and Optimization of the HVOF Process by Combined Experimental and Numerical Approaches[J]. Surface and Coatings Technology, 2008, 202(18): 4470-4478.
[20] RUSINOV P, BLEDNOVA Z, RUSINOVA A, et al.Development and Research of New Hybrid Composites in Order to Increase Reliability and Durability of Structural Elements[J]. Metals, 2023, 13(7): 1177.
[21] 李长银. GH4169合金等离子喷涂NiCrFeMo涂层工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
LI C Y.Study on Plasma Spraying NiCrFeMo Coating Process of GH4169 Alloy[D]. Harbin: Harbin Institute of Technology, 2018.
[22] 谢京, 李俊辰, 刘畅, 等. 制备工艺方法对NiCrFeMo涂层组织和性能影响研究[J]. 热喷涂技术, 2022, 14(2): 84-88.
XIE J, LI J C, LIU C, et al.Research on Micorstructure and Properties of NiCrFeMo Coating Sprayed by Different Processes[J]. Thermal Spray Technology, 2022, 14(2): 84-88.
[23] LIU Y F, LIU Y, XIAO X Y, et al.Surface Characteristics of the Ni-Based Superalloy Powders[J]. Vacuum, 2025, 233: 113937.
[24] HU X T, YE W M, ZHANG L C, et al.Investigation on Creep Properties and Microstructure Evolution of GH4169 Alloy at Different Temperatures and Stresses[J]. Materials Science and Engineering: A, 2021, 800: 140338.
[25] AN X L, ZHANG B, CHU C L, et al.Evolution of Microstructures and Properties of the GH4169 Superalloy during Short-Term and High-Temperature Processing[J]. Materials Science and Engineering: A, 2019, 744: 255-266.

Funding

The National Natural Science Foundation of China (92160202)
PDF(2656 KB)

Accesses

Citation

Detail

Sections
Recommended

/