A Review on Icing Detection and Anti-icing Coating Technologies for Wind Turbine Blades

ZENG Guofang, ZHANG Xiongbo, CUI Juan, SHU Fengyuan, DENG Jia, LEI Bing, YUAN Xin

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 121-130.

PDF(2192 KB)
PDF(2192 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (7) : 121-130. DOI: 10.7643/issn.1672-9242.2025.07.016
Key Projects Equipment

A Review on Icing Detection and Anti-icing Coating Technologies for Wind Turbine Blades

  • ZENG Guofang1, ZHANG Xiongbo2, CUI Juan2, SHU Fengyuan2,*, DENG Jia2, LEI Bing2, YUAN Xin2
Author information +
History +

Abstract

This paper comprehensively reviews the current research status of icing detection methods and anti-icing coating technologies for wind turbine blades. In terms of icing detection, the methods are categorized into direct, indirect, and mathematical modeling approaches. Direct detection techniques such as ultrasonic detection, thermal sensing, fiber-optic sensing, and capacitive sensors are detailed with their principles and practical applications. Indirect methods based on environmental monitoring and power curve deviation analysis are discussed, along with research resultson big data models integrating wind farm data and machine learning algorithms. The performance of various detection methods iscompared. For anti-icing coatings, this review focuses on hydrophobic coatings (including silicone and fluorinated polymers), photothermal coatings, and other functional coatings, elucidating their action mechanisms, material properties, and limitations. Hydrophobic coatings reduce ice adhesion by manipulating the contact angle of water droplets, while photothermal coatings rely on solar thermal energy for de-icing but are weather-dependent. Emerging multifunctional composite coatings represent a promising development direction. Finally, it is pointed out thatfuture research should aim to integrate detection method advantages, enhance coating performance, and reduce costs to ensure stable operation of wind power in complex climates and promote renewable energy development.

Key words

wind turbine blades / icing detection on blades / sensor technology / anti-icing coatings / hydrophobic coatings / functional coatings

Cite this article

Download Citations
ZENG Guofang, ZHANG Xiongbo, CUI Juan, SHU Fengyuan, DENG Jia, LEI Bing, YUAN Xin. A Review on Icing Detection and Anti-icing Coating Technologies for Wind Turbine Blades[J]. Equipment Environmental Engineering. 2025, 22(7): 121-130 https://doi.org/10.7643/issn.1672-9242.2025.07.016

References

[1] QUAYSON-SACKEY E, NYANTEKYI-KWAKYE B, AYETOR G K.Technological Advancements for Anti- Icing and De-Icing Offshore Wind Turbine Blades[J]. Cold Regions Science and Technology, 2025, 231: 104400.
[2] HAN J, CHANG H M.Development and Opportunities of Clean Energy in China[J]. Applied Sciences, 2022, 12(9): 4783.
[3] 胡琴, 王欢, 舒立春, 等. 覆冰条件下风力机叶片防/除冰方法综述[J]. 电工技术学报, 2024(17): 5482-5496.
HU Q, WANG H, SHU L C, et al.Review of Anti-/De- Icing Methods for Wind Turbine Blades under Icing Conditions[J]. Transactions of China Electrotechnical Society, 2024(17): 5482-5496.
[4] 郭时毅, 安江峰, 吴军, 等. 风力发电机叶片覆冰机理及防除冰技术研究进展[J]. 表面技术, 2024, 53(12): 50-65.
GUO S Y, AN J F, WU J, et al.Research Progress of Wind Turbine Blade Ice-Covering Mechanism and Anti-Icing Technology[J]. Surface Technology, 2024, 53(12): 50-65.
[5] 马茜, 张宇昌, 张胜寒, 等. 风机叶片防覆冰涂料的进展与研究[J]. 华北电力技术, 2013(8): 47-50.
MA Q, ZHANG Y C, ZHANG S H, et al.Progress and Research of the Fan Blade Anti-Icing Coating[J]. North China Electric Power, 2013(8): 47-50.
[6] WANG W, XUE Y, HE C, et al.Review of the Typical Damageand Damage-Detection Methods of Large Wind Turbine Blades[J]. Energies, 2022, 15: 56-72.
[7] RUIZ M, MUJICA L E, ALFÉREZ S, et al. Wind Turbine Fault Detection and Classification by Means of Image Texture Analysis[J]. Mechanical Systems and Signal Processing, 2018, 107: 149-167.
[8] 刘韬文, 蒙文川, 戴承伟, 等. 风力发电机防冻融冰综述[J]. 湖北电力, 2019, 43(1): 10-17.
LIU T W, MENG W C, DAI C W, et al.An Overview of Wind Turbine Generator Anti-Freezing and Deicing[J]. Hubei Electric Power, 2019, 43(1): 10-17.
[9] HOMOLA M C, NICKLASSON P J, SUNDSBØ P A.Ice Sensors for Wind Turbines[J]. Cold Regions Science and Technology, 2006, 46(2): 125-131.
[10] 徐教辉. 基于风机SCADA数据的叶片覆冰检测算法[D]. 北京: 华北电力大学, 2023.
XU J H.Detection Algorithm of Blade Icing Based on SCADA Data of Fan[D]. Beijing: North China Electric Power University, 2023.
[11] HSU D K.Apparatus and Method for Detection of Icing Onset and Ice Thickness[J]. The Journal of the Acoustical Society of America, 1994, 95(2): 1180-1181.
[12] 王鹏. 基于超声导波方法的风机叶片覆冰检测[D]. 哈尔滨: 哈尔滨工业大学, 2016.
WANG P.Detection of Icing on Fan Blades Based on Ultrasonic Guided Wave Method[D]. Harbin: Harbin Institute of Technology, 2016.
[13] GÓMEZ MUÑOZ C Q, GARCÍA MÁRQUEZ F P, SÁNCHEZ TOMÁS J M. Ice Detection Using Thermal Infrared Radiometry on Wind Turbine Blades[J]. Measurement, 2016, 93: 157-163.
[14] PAPPALARDO G, MINEO S, ZAMPELLI S P, et al.InfraRed Thermography Proposed for the Estimation of the Cooling Rate Index in the Remote Survey of Rock Masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 182-196.
[15] BARRIAS A, CASAS J R, VILLALBA S.A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications[J]. Sensors, 2016, 16(5): 748.
[16] 张照辉. 基于光纤传感技术的风力发电机结构状态评估方法[D]. 哈尔滨: 哈尔滨工业大学, 2020.
ZHANG Z H.Structural State Evaluation Method of Wind Turbine Based on Optical Fiber Sensing Technology[D]. Harbin: Harbin Institute of Technology, 2020.
[17] 吕安强, 魏伦. 基于光纤传感技术的风机叶片故障检测技术研究进展[J]. 高压电器, 2022, 58(7): 83-92.
LYU A Q, WEI L.Research Progress on Fault Detection Technology of Wind Turbine Blade Based on Fiber Optic Sensor[J]. High Voltage Apparatus, 2022, 58(7): 83-92.
[18] NEUMAYER M, BRETTERKLIEBER T, FLATSCHER M.Signal Processing for Capacitive Ice Sensing: Electrode Topology and Algorithm Design[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(5): 1458-1466.
[19] MADI E, POPE K, HUANG W M, et al.A Review of Integrating Ice Detection and Mitigation for Wind Turbine Blades[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 269-281.
[20] DAVIS N N, BYRKJEDAL Ø, HAHMANN A N, et al.Ice Detection on Wind Turbines Using the Observed Power Curve[J]. Wind Energy, 2016, 19(6): 999-1010.
[21] 喻才民. 大型风力发电机叶片覆冰诊断与预测方法研究[D]. 北京: 北京邮电大学, 2021.
YU C M.Study on Diagnosis and Prediction Method of Blade Icing of Large Wind Turbine[D]. Beijing: Beijing University of Posts and Telecommunications, 2021.
[22] 蓝彬桓. 风力发电机叶片运用疏水性涂层防覆冰研究[D]. 重庆: 重庆大学, 2016.
LAN B H.Study on Application of Hydrophobic Coating on Wind Turbine Blades to Prevent Icing[D]. Chongqing: Chongqing University, 2016.
[23] 孙永朋, 关新, 刘传宝, 等. 风力发电机叶片结冰检测及防除冰技术综述[J]. 上海节能, 2024(1): 143-148.
SUN Y P, GUAN X, LIU C B, et al.Overview of Ice Detection and Deicing Technology for Wind Turbine Blades[J]. Shanghai Energy Saving, 2024(1): 143-148.
[24] 赵乐. 超疏水材料及其涂层的研究进展[J]. 表面技术, 2024, 53(24): 54-68.
ZHAO L.Research Progress of Superhydrophobic Materials and Their Coatings[J]. Surface Technology, 2024, 53(24): 54-68.
[25] 张青, 吕玉珍, 汪佛池, 等. 采用超憎水性涂层缓解导线表面覆冰的实验研究[J]. 现代电力, 2010, 27(6): 31-34.
ZHANG Q, LÜ Y Z, WANG F C, et al.Effect of Super-Hydrophobic Coating of Wire on Anti-Icing[J]. Modern Electric Power, 2010, 27(6): 31-34.
[26] 李剑, 王湘雯, 黄正勇, 等. 超疏水绝缘涂层制备与防冰、防污研究现状[J]. 电工技术学报, 2017, 32(16): 61-75.
LI J, WANG X W, HUANG Z Y, et al.Research of Preparation, Anti-Icing and Anti-Pollution of Super Hydrophobic Insulation Coatings[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 61-75.
[27] HE H, GUO Z G.Superhydrophobic Materials Used for Anti-Icing Theory, Application, and Development[J]. iScience, 2021, 24(11): 103357.
[28] 杨斌. 输电线路防覆冰用超疏水自清洁涂料的制备[D]. 重庆: 重庆大学, 2011.
YANG B.Preparation of Super-Hydrophobic Self-Cleaning Coatings for Anti-Icing of Transmission Lines[D]. Chongqing: Chongqing University, 2011.
[29] 陈茜. 沉淀法二氧化硅的超疏水化原位改性及其在紫外光固化涂料中的应用[D]. 广州: 华南理工大学, 2013.
CHEN Q.Superhydrophobic In-Situ Modification of Precipitated Silica and Its Application in Ultraviolet Curing Coatings[D]. Guangzhou: South China University of Technology, 2013.
[30] WENG R, ZHANG H F, LIU X W.Spray-Coating Process in Preparing PTFE-PPS Composite Super-Hydrophobic Coating[J]. AIP Advances, 2014, 4(3): 031327.
[31] LI W, ZHAN Y L, YU S R.Applications of Superhydrophobic Coatings in Anti-Icing: Theory, Mechanisms, Impact Factors, Challenges and Perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117.
[32] 于洪明, 于良峰, 游慧鹏, 等. 风电叶片防冰除冰技术的研究进展[J]. 材料导报, 2016, 30(S1): 220-222.
YU H M, YU L F, YOU H P, et al.Research and Development on Anti-Icing and De-Icing Technology of Wind Turbine Blade[J]. Materials Reports, 2016, 30(S1): 220-222.
[33] 刘胜峰. 太阳光谱选择性吸收涂层新型颜料的合成研究[J]. 太阳能学报, 1994, 15(3): 300-304.
LIU S F.The New Pigment Synthesis and Study of the Selectively Absortive Coating of Solar Spectrum[J]. Acta Energiae Solaris Sinica, 1994, 15(3): 300-304.
[34] LUO X M, HU W J, CAO M, et al.An Environmentally Friendly Approach for the Fabrication of Conductive Superhydrophobic Coatings with Sandwich-Like Structures[J]. Polymers, 2018, 10(4): 378.
PDF(2192 KB)

Accesses

Citation

Detail

Sections
Recommended

/