Corrosion Mechanism of GH4169 Alloy in Simulated Shipboard Platform Environment

JIA Runchuan, LIU Zemeng, LI Ming, CHEN Yu, CUI Tengfei, WU Jianguo

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 38-44.

PDF(1796 KB)
PDF(1796 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 38-44. DOI: 10.7643/issn.1672-9242.2025.08.005
Special Topic—Application and Collaborative Evaluation Technology of Light Weapons in Complex Environments

Corrosion Mechanism of GH4169 Alloy in Simulated Shipboard Platform Environment

  • JIA Runchuan1,2, LIU Zemeng1,2, LI Ming1,2, CHEN Yu1,2, CUI Tengfei3, WU Jianguo3
Author information +
History +

Abstract

The work aims to investigate the corrosion damage mechanisms and influencing factors of GH4169 alloy under simulated shipboard environments. Salt spray/SO2 composite tests were conducted on samples subject to two distinct heat treatment regimes. Micro-corrosion morphologies were characterized via scanning electron microscopy (SEM). Results revealed that under salt spray/SO2 conditions, two GH4169 samples exhibited delayed corrosion initiation compared with common metals, but ultimately succumbed to corrosion, which produced green corrosion products. Samples with higher δ-phase content demonstrated earlier corrosion onset and progressively severe corrosion, characterized by increased pit density, larger pit dimensions, and greater depths, indicating exacerbated overall corrosion. These findings underscore the alloy's robust corrosion resistance in shipboard environments. Variations in corrosion behavior during testing are primarily attributed to heat treatment-induced differences in δ-phase content and distribution, with higher δ-phase fractions correlating with increased corrosion susceptibility.

Key words

high-temperature alloy / salt spray/SO2 composite test / shipboard platform environment / accelerated corrosion / δ-phase / corrosion mechanism

Cite this article

Download Citations
JIA Runchuan, LIU Zemeng, LI Ming, CHEN Yu, CUI Tengfei, WU Jianguo. Corrosion Mechanism of GH4169 Alloy in Simulated Shipboard Platform Environment[J]. Equipment Environmental Engineering. 2025, 22(8): 38-44 https://doi.org/10.7643/issn.1672-9242.2025.08.005

References

[1] 杭超, 潘凯, 陈永辉, 等. GH4169材料振动弯曲高周疲劳性能研究[J]. 装备环境工程, 2024, 21(9): 11-18.
HANG C, PAN K, CHEN Y H, et al.High Cycle Fatigue Performance of GH4169 under Vibration Bending[J]. Equipment Environmental Engineering, 2024, 21(9): 11-18.
[2] SONG Z X, QI H, WU Z S, et al.Study on Ultrahigh Cycle Fatigue Performance of GH4169 Nickel-Based Alloy at 650 ℃[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(6): 970-978.
[3] 朱李云, 谢田, 张泓. TB8与GH4169材料在紧固件中的应用[J]. 机械工程师, 2013(10): 41-42.
ZHU L Y, XIE T, ZHANG H.Application of TB8 and GH4169 Materials in Fasteners[J]. Mechanical Engineer, 2013(10): 41-42.
[4] 邹士文, 许文, 卢松涛, 等. 典型高强紧固件海南雨水环境腐蚀及防护研究[J]. 腐蚀科学与防护技术, 2018, 30(5): 523-528.
ZOU S W, XU W, LU S T, et al.Corrosion Behavior and Protection Measures of Typical High-Strength Fasteners in Hainan Rain Environment[J]. Corrosion Science and Protection Technology, 2018, 30(5): 523-528.
[5] 赵宏璐, 王理, 佟文伟, 等. GH4169合金抗盐雾-热暴露循环腐蚀性能试验研究[J]. 航空发动机, 2009, 35(6): 36-39.
ZHAO H L, WANG L, TONG W W, et al.Experimental Investigation of Corrosion Resistance Performance for GH4169 Alloy under Salt Spray and Heat Exposure Cycle[J]. Aeroengine, 2009, 35(6): 36-39.
[6] 王乐, 丁晨, 房桂祥. 海洋自然环境下舰载武器失效模式分析[J]. 装备环境工程, 2019, 16(4): 98-102.
WANG L, DING C, FANG G X.Failure Mode of Shipborne Weapons in Marine Natural Environment[J]. Equipment Environmental Engineering, 2019, 16(4): 98-102.
[7] 孙盛坤, 孙志华, 汤智慧, 等. 舰载飞机腐蚀控制与防护技术[J]. 装备环境工程, 2017, 14(3): 18-22.
SUN S K, SUN Z H, TANG Z H, et al.Corrosion Control and Protection Technology of Carrier-Borne Aircraft[J]. Equipment Environmental Engineering, 2017, 14(3): 18-22.
[8] 朱金阳, 李明, 程丛高. 美海军舰载航空装备“盐雾- SO2” 试验方法发展历程及启示[J]. 装备环境工程, 2017, 14(3): 33-38.
ZHU J Y, LI M, CHENG C G.Development and Enlightenment of “Salt Spray-SO2” Test Method for Carrier-Based Aircraft of US Navy[J]. Equipment Environmental Engineering, 2017, 14(3): 33-38.
[9] 张令波, 李明, 傅耘. 舰载机环境试验方法发展探讨[J]. 装备环境工程, 2015, 12(6): 100-103.
ZHANG L B, LI M, FU Y.Development of Environmental Test Methods for Carrier-Based Aircraft[J]. Equipment Environmental Engineering, 2015, 12(6): 100-103.
[10] 李刚, 李明, 朱金阳, 等. 酸性介质对橡胶材料在盐雾环境下老化行为的影响研究[J]. 装备环境工程, 2019, 16(4): 76-82.
LI G, LI M, ZHU J Y, et al.Effect of Acidic Medium on Aging Behavior of Rubber Materials in Salt Fog Environment[J]. Equipment Environmental Engineering, 2019, 16(4): 76-82.
[11] 李明, 朱金阳, 李刚, 等. 典型航空装备用金属材料在不同酸性盐雾环境下的腐蚀效应及机理[J]. 装备环境工程, 2019, 16(4): 38-45.
LI M, ZHU J Y, LI G, et al.Corrosion Performance and Mechanism of Typical Aviation Metal Materials under Different Acid Salt Spray Test Environments[J]. Equipment Environmental Engineering, 2019, 16(4): 38-45.
[12] ASTM. Standard Practice for Modified Salt Spray (Fog) Testing: ASTM G85-19[S]. New York: ASTM International, 2019.
[13] 王绍明, 萧以德, 张三平. SO2/盐雾复合循环加速腐蚀试验模拟锌在户外大气暴露腐蚀行为[J]. 腐蚀与防护, 2005, 26(1): 13-17.
WANG S M, XIAO Y D, ZHANG S P.SO2/Salt-Spray Synergistic Accelerated Test Simulating Atmospheric Exposure Corrosion Behavior of Zinc[J]. Corrosion & Protection, 2005, 26(1): 13-17.
[14] 屈庆, 严川伟, 张蕾, 等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应[J]. 金属学报, 2002, 38(10): 1062-1066.
QU Q, YAN C W, ZHANG L, et al.Synergism of NaCl and SO2 in the Initial Atmo- Spheric Corrosion of A3 Steel[J]. Acta Metallrugica Sinica, 2002, 38(10): 1062-1066.
[15] 鲍庆煌, 叶兵, 蒋海燕, 等. 镍基高温合金耐腐蚀性能的研究进展[J]. 材料导报, 2015, 29(17): 128-134.
BAO Q H, YE B, JIANG H Y, et al.Research Progress on the Corrosion Resistance of Nickel-Based Superalloy[J]. Materials Review, 2015, 29(17): 128-134.
[16] 马国印. 镍和镍合金耐腐蚀性分析[J]. 化工装备技术, 2007, 28(1): 71-74.
MA G Y.Corrosion Resistance Analysis of Nickel and Nickel Alloy[J]. Chemical Equipment Technology, 2007, 28(1): 71-74.
[17] 袁曹龙. 核电站蒸汽发生器用600镍基合金腐蚀行为的研究[D]. 长沙: 长沙理工大学, 2010.
YUAN C L.Study on Corrosion Behavior of 600 Nickel-Based Alloy for Steam Generator in Nuclear Power Plant[D]. Changsha: Changsha University of Science & Technology, 2010.
[18] 韩薇, 贾薇, 汪俊, 等. 凝露状态下SO2对A3钢腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2002, 22(6): 355-358.
HAN W, JIA W, WANG J, et al.Effect of SO2 on Corrosion Mechanism of A3 Steel at Dewing Environment[J]. Journal of Chinese Society for Corrosion and Protection, 2002, 22(6): 355-358.
[19] 刘存, 曹涛, 刘伟, 等. 低碳钢在模拟含SO2海洋大气中的氢致开裂机理[J]. 腐蚀与防护, 2012, 33(3): 209-211.
LIU C, CAO T, LIU W, et al.Mechanism of Hydrogen Induced Cracking of Carbon Steel in Simulated Atmospheric Environment Containing SO2[J]. Corrosion & Protection, 2012, 33(3): 209-211.
[20] 赵雪会, 白真权, 冯耀荣, 等. 热处理温度及析出相对镍基合金腐蚀性能的影响[J]. 材料热处理学报, 2012, 33(8): 39-44.
ZHAO X H, BAI Z Q, FENG Y R, et al.Effects of Heat Treatment and Precipitated Phase on Corrosion Resistance of Ni-Based Alloy[J]. Transactions of Materials and Heat Treatment, 2012, 33(8): 39-44.
[21] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程, 2012, 40(8): 92-100.
QI H.Review of INCONEL 718 Alloy: Its History, Properties, Processing and Developing Substitutes[J]. Journal of Materials Engineering, 2012, 40(8): 92-100.
[22] 王建国, 汪波, 刘东, 等. GH4169合金加热过程中δ相形态和晶粒尺寸的演化规律[J]. 热加工工艺, 2013, 42(24): 114-116.
WANG J G, WANG B, LIU D, et al.Evolution of Δ-Phase Morphology and Grain Size in GH4169 Alloy during Preheating[J]. Hot Working Technology, 2013, 42(24): 114-116.
[23] 李维鹏, 罗坤杰, 王惠生, 等. 沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
LI W P, LUO K J, WANG H S, et al.Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water[J]. Journal of Chinese Society for Corrosion and Protection, 2025, 45(4): 947-955.
[24] 姬茹一, 贾雅妮. 3种镍基合金晶间腐蚀敏感性对比[J]. 金属加工(热加工), 2024(5): 105-108.
JI R Y, JIA Y N.Comparative Study on Intergranular Corrosion Sensitivity of Three Nickel-Based Alloys[J]. MW Metal Forming, 2024(5): 105-108.
[25] 叶超, 杜楠, 赵晴, 等. 不锈钢点蚀行为及研究方法的进展[J]. 腐蚀与防护, 2014, 35(3): 271-276.
YE C, DU N, ZHAO Q, et al.Progress in Research of Pitting Corrosion Behavior and Research Methods of Stainless Steels[J]. Corrosion & Protection, 2014, 35(3): 271-276.

Funding

National Defense Technology Basic Program of China (JSHS2020209B001)
PDF(1796 KB)

Accesses

Citation

Detail

Sections
Recommended

/