Study on the Sand Erosion Resistance Behavior of Polyurethane Protective Tape for Helicopter Rotors

ZHU Bensheng, ZHU Yichao, WU Jianguo, GONG Qing, ZHENG Linfeng, CAO Yaoqin

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 45-53.

PDF(4454 KB)
PDF(4454 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 45-53. DOI: 10.7643/issn.1672-9242.2025.08.006
Special Topic—Application and Collaborative Evaluation Technology of Light Weapons in Complex Environments

Study on the Sand Erosion Resistance Behavior of Polyurethane Protective Tape for Helicopter Rotors

  • ZHU Bensheng, ZHU Yichao, WU Jianguo, GONG Qing, ZHENG Linfeng, CAO Yaoqin
Author information +
History +

Abstract

The work aims to reveal the mechanism of sand erosion resistance of polyurethane protective tapes used for helicopter rotors, and to obtain evaluation parameters and material improvement directions for sand erosion of polyurethane protective tapes. This manuscript simulated the working environment of polyurethane protective tapes for helicopter rotors using the gas jet erosion method. Experimental parameters such as gravel composition and sand dust flow rate were established. The sand erosion resistance of polyurethane protective tapes under erosion angles of 30° to 90° were evaluated through sand erosion test. The relationship between the angle of erosion and the weight of erosion loss, as well as the relationship between the angle of erosion and the volume of erosion loss were clarified. Combined with characterization of surface roughness and microstructure of polyurethane protective tapes after sand erosion, the process of sand erosion pit formation and sand erosion damage mechanism of polyurethane protective tapes was analyzed. Under different erosion angles, both erosion amount and erosion volume showed that when the impact angle was 30 °, the erosion amount and erosion volume were the highest, and when the erosion angle was 90 °, the erosion amount and erosion volume were the lowest. And the loss volume of polyurethane protective tapes after 15 minutes of sand erosion impact was 58 mm3, which was about 23 times the loss volume of polyurethane protective tapes at an erosion angle of 90°. The results of surface roughness and microstructure indicated that tangential load played a dominant role in the erosion of polyurethane protective tapes at low erosion angles, while normal impact load played a dominant role in the erosion of polyurethane protective tapes at high erosion angles. The sand erosion damage mechanism of polyurethane protective tapes varies significantly under different erosion angles. Considering the safety of helicopter rotors, it is recommended that the erosion angle for the sand erosion test be 30°. Subsequently, the sand erosion resistance can be further improved by enhancing the tear strength of the material.

Key words

helicopter / rotor / polyurethane protective tape / methods for sand erosion assessment / impact angle / mechanism of sand erosion damage

Cite this article

Download Citations
ZHU Bensheng, ZHU Yichao, WU Jianguo, GONG Qing, ZHENG Linfeng, CAO Yaoqin. Study on the Sand Erosion Resistance Behavior of Polyurethane Protective Tape for Helicopter Rotors[J]. Equipment Environmental Engineering. 2025, 22(8): 45-53 https://doi.org/10.7643/issn.1672-9242.2025.08.006

References

[1] 邓景辉. 高速直升机关键技术与发展[J]. 航空学报, 2024, 45(9): 529085.
DENG J H.Key Technologies and Development for High-Speed Helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085.
[2] 熊宏锦. 直升机旋翼系统构型发展综述[J]. 直升机技术, 2025(1): 61-66.
XIONG H J.Overview of Helicopter Rotor System Configuration Development[J]. Helicopter Technique, 2025 (1): 61-66.
[3] 林天培, 陆伟良, 肖敏, 等. 我国低空交通飞行器发展现状及对策[J]. 绿色建造与智能建筑, 2025(3): 152-156.
LIN T P, LU W L, XIAO M, et al.The Current Situation and Countermeasures of Low-Altitude Traffic Aircraft Development in China[J]. Green Construction and Intelligent Building, 2025(3): 152-156.
[4] 马志宏, 苏兴荣. 砂尘环境对军用装备磨损和腐蚀的影响[J]. 兵工学报, 2005, 26(4): 553-556.
MA Z H, SU X R.Abrasion and Erosion on Military Equipment by Sand and Dust[J]. Acta Armamentarii, 2005, 26(4): 553-556.
[5] 何光宇, 李应红, 王健, 等. 基于等离子体的抗冲蚀涂层技术及其在直升机发动机领域的应用[J]. 高电压技术, 2014, 40(7): 2133-2139.
HE G Y, LI Y H, WANG J, et al.Anti-Erosion Coating Technique Based on Plasma and Its Application in Helicopter Aero-Engines[J]. High Voltage Engineering, 2014, 40(7): 2133-2139.
[6] 谌广昌, 段小明, 朱金荣, 等. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244.
CHEN G C, DUAN X M, ZHU J R, et al.Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect[J]. Journal of Inorganic Materials, 2025, 40(3): 225-244.
[7] 王振林, 陆文明, 孙浩, 等. 直升机旋翼前缘弹性耐砂蚀涂料的制备和性能研究[J]. 涂料工业, 2024, 54(5): 71-75.
WANG Z L, LU W M, SUN H, et al.Preparation and Performance Study of Elastic Sand Corrosion Resistant Coatings for Helicopter Rotors Leading Edge[J]. Paint & Coatings Industry, 2024, 54(5): 71-75.
[8] 沈真, 杨胜春, 克莱瑞珂. 复合材料砂蚀研究综述[J]. 航空材料学报, 1999, 19(2): 54-62.
SHEN Z, YANG S C, KE L.Review on Sand Erosion of Composites[J]. Journal of Aeronautical Materials, 1999, 19(2): 54-62.
[9] 基险峰. 聚氨酯保护胶带在飞机表面保护中的应用[J]. 航空维修与工程, 2004(6): 54-55.
JI X F.Polyurethane Protective Tape Application in Aircraft Surface Protection[J]. Aviation Maintenance & Engineering, 2004(6): 54-55.
[10] 尹维. 红柳抗冲蚀特性与机理的仿生研究[D]. 长春: 吉林大学, 2014.
YIN W.Bionic Study on Erosion Resistance Characteristics and Mechanism of Red Willow[D]. Changchun: Jilin University, 2014.
[11] 高正. 直升机设计[M]. 南京: 南京航空学院直升机技术研究所, 1992.
GAO Z.Design of Helicopter[M]. Nanjing: Nanjing University of Aeronautics Helicopter Technology Research Institute, 1992.
[12] 刘艳晨, 郝贠洪, 高峰, 等. 模拟风沙环境下混凝土防护涂层抗冲蚀性能的研究[J]. 表面技术, 2021, 50(8): 273-281.
LIU Y C, HAO Y H, GAO F, et al.Study on Erosion Resistance of Concrete Protective Coating under Simulated Desert Environment[J]. Surface Technology, 2021, 50(8): 273-281.
[13] 段萌, 张运强, 潘国庆, 等. CVD金刚石膜与常用红外光学材料抗砂蚀性能对比研究[J]. 表面技术, 2017, 46(6): 270-275.
DUAN M, ZHANG Y Q, PAN G Q, et al.Comparison of Sand Erosion Resistance of CVD Diamond Film and Common Infrared Optical Materials[J]. Surface Technology, 2017, 46(6): 270-275.
[14] 中国人民解放军总装备部. 军用装备实验室环境试验方法第12部分: 砂尘试验: GJB 150.12A—2009[S]. 北京: 中国人民解放军总装备部, 2009.
General Equipment Department of the Chinese People's Liberation Army. Laboratory Environmental Test Methods for Military Materiel. Part 12: Sand and Dust Test: GJB 150.12A—2009[S]. 北京: 中国人民解放军总装备部, 2009.
[15] 中国石油和化学工业协会. 涂料耐磨性测定落砂法: GB/T 23988—2009[S]. 北京: 中国标准出版社, 2010.
Determination for Abrasion Resistance of Coatings by Falling Abrasive: GB/T 23988—2009[S] GB/T 23988—2009[S]. Beijing: Standards Press of China, 2010.
[16] 黄伟九, 刘成龙, 李志均, 等. 冲蚀速度及沙粒粒径对铝青铜冲蚀磨损的影响[J]. 功能材料, 2016, 47(10): 10193-10197.
HUANG W J, LIU C L, LI Z J, et al.Effect Offlow Velocity and Particle Size on the Erosion of QAl9-4 Aluminum Bronze[J]. Journal of Functional Materials, 2016, 47(10): 10193-10197.
[17] 卢金玲, 张欣, 王维, 等. 沙粒粒径对水力机械材料磨蚀性能的影响[J]. 农业工程学报, 2018, 34(22): 53-60.
LU J L, ZHANG X, WANG W, et al.Effect of Silt Diameter on Abrasion Performance of Hydraulic Mechanical Materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 53-60.
[18] 洪亮, 刘汉伟, 罗先武, 等. 渣浆泵磨损试验台研制时应考虑的问题[J]. 流体机械, 1999, 27(7): 9-11.
HONG L, LIU H W, LUO X W, et al.Problems to Be Considered in the Development of Slurry Pump Wear Test-Bed[J]. Fluid Machinery, 1999, 27(7): 9-11.
[19] 潘焕友, 杨天. 直升机桨叶耐颗粒物/砂磨蚀标准分析[J]. 直升机技术, 2013(4): 51-56.
PAN H Y, YANG T.Analysis of Article/Sand Erosion Standards for Helicopter Blade[J]. Helicopter Technique, 2013(4): 51-56.
[20] 吴小梅, 李伟光, 陆峰. 固体颗粒冲蚀对钛合金ZrN涂层抗冲蚀性能的影响[J]. 航空材料学报, 2006, 26(6): 26-29.
WU X M, LI W G, LU F.Effect of Solid Particles Erosion on Erosion Resistance of ZrN Coated Titanium Alloy[J]. Journal of Aeronautical Materials, 2006, 26(6): 26-29.
[21] 马松林. TC4平板受砂尘高速冲蚀试验方法与损伤规律研究[D]. 南京: 南京航空航天大学, 2019.
MA S L.Study on Test Method and Damage Law of TC4 Plate Subjected to High-Speed Erosion by Sand and Dust[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[22] US Department of Defense. Particle/Sand Erosion Testing of Rotor Blade Protective Materials: MIL-STD-3033[S]. Washington: United States Department of Defense: 2010.
[23] American Society for Testing and Materials. Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets: ASTM G76-13[S]. Conshohocken: ASTM International, 2013.
[24] 国防科学技术工业委员会. 军用直升机防砂尘要求: GJB 1171—1991[S]. 北京: 科学出版社, 1991.
Commission for Science, Technology and Industry for National Defense. Sand and Dust Control Requirements for Military Helicopters: GJB 1171—1991[S]. Beijing: Science Press, 1991.
PDF(4454 KB)

Accesses

Citation

Detail

Sections
Recommended

/