Piston Rod Corrosion in Aircraft Actuators and Its Impact Mechanism on Sealing Performance

ZHANG Ding, BIAN Guixue, LI Ming, HUANG Hailiang, KUANG Lin

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 62-69.

PDF(22927 KB)
PDF(22927 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 62-69. DOI: 10.7643/issn.1672-9242.2025.08.008
Special Topic—Application and Collaborative Evaluation Technology of Light Weapons in Complex Environments

Piston Rod Corrosion in Aircraft Actuators and Its Impact Mechanism on Sealing Performance

  • ZHANG Ding1, BIAN Guixue1, LI Ming2, HUANG Hailiang1, KUANG Lin3
Author information +
History +

Abstract

The work aims to analyze the corrosion mechanism of frequent sealing failures of aircraft actuators and its impact on sealing performance. Based on the operational environment characteristics of a certain type of onboard actuators, research was conducted through natural exposure tests, microscopic corrosion morphology and composition analysis, surface roughness testing, and other methods. After two years of natural exposure, the chrome plating layer on the piston rod peeled off, and the resulting deformation caused coarse cracks. The peeled areas were filled with corrosion products from the high-strength steel substrate, which spread outward. The remaining chrome plating at the edges became sharp, and the surface roughness of the piston rod increased by 17.48 times, leading to a doubled leakage rate. Additionally, slight oil seepage was observed at the sealing interface of the piston rod. The specialized hard chrome plating process introduces numerous defects in the coating, accelerating substrate corrosion and increasing surface roughness. This prevents tight adhesion between the piston rod and the sealing ring or causes scratches on the sealing ring, ultimately leading to leakage failures.

Key words

aircraft actuator / piston rod / chromium coating / corrosion / sealing performance / fault mechanism

Cite this article

Download Citations
ZHANG Ding, BIAN Guixue, LI Ming, HUANG Hailiang, KUANG Lin. Piston Rod Corrosion in Aircraft Actuators and Its Impact Mechanism on Sealing Performance[J]. Equipment Environmental Engineering. 2025, 22(8): 62-69 https://doi.org/10.7643/issn.1672-9242.2025.08.008

References

[1] 李玲, 李洪伟, 李旭东. 某型飞机作动筒常见故障分析及维护[J]. 新技术新工艺, 2014(5): 122-124.
LI L, LI H W, LI X D.Common Fault Analysis and Maintenance of Hydraulic Actuating Cylinder of a Kind of Aircraft[J]. New Technology & New Process, 2014(5): 122-124.
[2] 刘奔. 飞机作动筒动密封试验系统开发及仿真分析[D]. 杭州: 浙江大学, 2014.
LIU B.Development and Simulation Analysis of Dynamic Seal Test System for Aircraft Actuator[D]. Hangzhou: Zhejiang University, 2014.
[3] NAU B S.An Historical Review of Studies of Polymeric Seals in Reciprocating Hydraulic Systems[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1999, 213(3): 215-226.
[4] CRUDU M, FATU A, CANANAU S, et al.A Numerical and Experimental Friction Analysis of Reciprocating Hydraulic ‘U’ Rod Seals[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226(9): 785-794.
[5] NIKAS G K.Analytical Modeling of Elastomeric Seals in Hydraulic Systems under Transient Thermal Conditions[J]. Tribology International, 2020, 142: 105981.
[6] BORDES C, COGNÉ C, LONJON A, et al. Nanofiller Effects on PTFE Composite Seal Wear in High-pressure Hydrogen[J]. Wear, 2019, 426-427: 517-526.
[7] PINEDO B, AGUIRRE G, IBARRA A, et al.Laser Surface Texturing for Improving Hydraulic Seal Performance[J]. Applied Surface Science, 2017, 410: 425-431.
[8] 陈华, 周忆, 刘畅. 液压缸杆密封的多场耦合仿真与结构优化[J]. 工程力学, 2019, 36(6): 230-238.
CHEN H, ZHOU Y, LIU C.Multi-field Coupling Simulation and Structural Optimization of Hydraulic Cylinder Rod Seals[J]. Engineering Mechanics, 2019, 36(6): 230-238.
[9] THOMAS S, OSPINA A, GROUS A, et al.Thermo-oxidative Aging of NBR Composites for Hydraulic Seals[J]. Polymer Degradation and Stability, 2018, 153: 75-86.
[10] KUMAR S, PATEL S K, DAS S, et al.Graphene-reinforced FKM Composites for High-temperature Hydraulic Seals[J]. Composite Structures, 2023, 304: 116456.
[11] 李强, 黄传真, 孙胜. 超高压液压密封的炭黑/丁腈橡胶复合材料老化行为[J]. 摩擦学学报, 2022, 42(3): 511-520.
LI Q, HUANG C Z, SUN S.Aging Behavior of Carbon Black/NBR Composites for Ultra-high-pressure Hydraulic Seals[J]. Tribology, 2022, 42(3): 511-520.
[12] 黄涛, 王建平, 林勇. 深海液压系统密封的低温适应性研究[J]. 润滑与密封, 2018, 43(5): 68-73.
HUANG T, WANG J P, LIN Y.Low-temperature Adaptability of Seals for Deep-Sea Hydraulic Systems[J]. Lubrication Engineering, 2018, 43(5): 68-73.
[13] 王磊, 赵晓昱, 李健. 基于数字孪生的航空液压作动器密封寿命预测[J]. 中国机械工程, 2023, 34(8): 907-915.
WANG L, ZHAO X Y, LI J.Seal Life Prediction of Aviation Hydraulic Actuators Based on Digital Twin[J]. China Mechanical Engineering, 2023, 34(8): 907-915.
[14] 周健, 李彦峰, 吴伟东. 金属骨架/橡胶复合密封的疲劳失效仿真与实验[J]. 哈尔滨工业大学学报, 2022, 54(7): 102-110.
ZHOU J, LI Y F, WU W D.Simulation and Experiment on Fatigue Failure of Metal-rubber Hybrid Seals[J]. Journal of Harbin Institute of Technology, 2022, 54(7): 102-110.
[15] 张强,李华,王磊. 航空液压作动筒O形密封圈失效机理分析[J]. 航空学报, 2018, 39(6): 621-630.
ZHANG Q, LI H, WANG L.Failure Mechanism Analysis of O-ring Seals in Aircraft Hydraulic Actuators[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 621-630.
[16] SMITH J A, JOHNSON R T.Failure Modes and Mechanisms in Hydraulic Cylinder Sealing Systems: A Comprehensive Review[J]. Tribology International, 2015, 88: 112-126.
[17] FATU A, HAJJAM M.Dynamic Sealing Behavior of Reciprocating Hydraulic Rods[J]. Tribology Transactions, 2016, 59(2): 267-279.
[18] MA Y, ZHANG Q, SMITH R, et al.Acoustic Emission-based Leakage Detection in Hydraulic Seals[J]. Mechanical Systems and Signal Processing, 2022, 168: 108692.
[19] 张伟, 刘志全, 王德成. 液压O形圈密封的微观泄漏模型与实验验证[J]. 机械工程学报, 2021, 57(14): 134-142.
ZHANG W, LIU Z, WANG D.Micro-leakage Model and Experimental Verification of Hydraulic O-ring Seals[J]. Chinese Journal of Mechanical Engineering, 2021, 57(14): 134-142.
[20] 刘洋, 胡国良, 杨志军. 基于深度学习的液压密封失效声纹诊断方法[J]. 振动与冲击, 2024, 43(2): 112-120.
LIU Y, HU G L, YANG Z J.Acoustic Signature Diagnosis Method for Hydraulic Seal Failure Based on Deep Learning[J]. Journal of Vibration and Shock, 2024, 43(2): 112-120.
[21] ZHANG Z, LI H, CHEN L, et al.4D-printed Shape- memory Polymer Seals for Adaptive Hydraulic Systems[J]. Advanced Engineering Materials, 2024, 26(1): 2300785
[22] WHITE C, DENNY D, BRITAIN G.The Sealing Mechanism of Flexible Packings[M]. London: HM Stationery Office, 1948.
[23] NIKAS G.Eighty Years of Research on Hydraulic Reciprocating Seals: Review of Tibological Studies and Related Topics Since the 1930s[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(1): 1-23.
[24] RANA A, SAYLES R.An Experimental Study on the Friction Behaviour of Aircraft Hydraulic Actuator Cylinder Elastomeric Reciprocating Seals[J]. Tribology and Interface Engineering Series, 2005(48): 507-515.
[25] SALAHELDIN A M, MORSI M, EL-SHERBINY M G, et al. Failure Analysis of Hydraulic Cylinder Seals in Offshore Wind Turbines[J]. Engineering Failure Analysis, 2021, 120: 105074.

Funding

National Natural Science Foundation of China (52074234); Youth Scientific and Technological Innovation Research Team Project of Sichuan Province (2020JDTD0016); Major Scientific and Technological Project of CNOOC Limited (CNOOC-KJ 135 ZDXM 38 ZJ 05 ZJ)
PDF(22927 KB)

Accesses

Citation

Detail

Sections
Recommended

/