Seawater Galvanic Corrosion Testing Methods and Applications for Sea-air Cross-medium Equipment

LIU Xulin, SUN Bin, PAN Ying, XIE Long, DU Wubin, SONG Boyuan

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 74-80.

PDF(2340 KB)
PDF(2340 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 74-80. DOI: 10.7643/issn.1672-9242.2025.08.010
Weapons Equipment

Seawater Galvanic Corrosion Testing Methods and Applications for Sea-air Cross-medium Equipment

  • LIU Xulin, SUN Bin, PAN Ying, XIE Long, DU Wubin, SONG Boyuan
Author information +
History +

Abstract

The work aims to conduct the complex marine environmental adaptability design for sea-air cross-medium equipment and validate the design through environmental testing. To address the long-term repeated seawater immersion environment faced by sea-air cross-medium equipment, a natural test method with alternating wet-dry surface seawater corrosion was designed. Six different coating schemes were proposed and compared through 90-day natural surface seawater exposure tests. By analyzing the appearance, glossiness, adhesion, low-frequency impedance modulus, and other parameters of the post-test sample, the fouling-release protective coating scheme was determined as the optimal. The designed test sample connection method effectively simulates actual equipment conditions, visually demonstrating electrochemical corrosion between different materials. The alternating wet-dry test method accelerates corrosion exposure, and the selected coating and process scheme provides valuable design ideas and methods for corrosion protection of future sea-air cross-medium equipment.

Key words

seawater corrosion / environmental test / cross-medium / surface seawater test / electrochemical corrosion / marine environmental adaptability

Cite this article

Download Citations
LIU Xulin, SUN Bin, PAN Ying, XIE Long, DU Wubin, SONG Boyuan. Seawater Galvanic Corrosion Testing Methods and Applications for Sea-air Cross-medium Equipment[J]. Equipment Environmental Engineering. 2025, 22(8): 74-80 https://doi.org/10.7643/issn.1672-9242.2025.08.010

References

[1] 冯亚菲, 方志刚, 赵伊. 海军装备腐蚀仿真技术现状、挑战和展望[J]. 中国材料进展, 2020, 39(3): 179-184.
FENG Y F, FANG Z G, ZHAO Y.Status, Challenge and Prospect of the Technology of Corrosion Simulation on Navy Equipment[J]. Materials China, 2020, 39(3): 179-184.
[2] 代学睿. 含砂海水管路冲刷-电化学耦合腐蚀数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2021: 7-10.
DAI X R.A Coupling Numerical Simulation of physical Erosion-Electrochemical Corrosion in Sand-Containing Seawater Pipeline Flow[D]. Harbin: Harbin Institute of Technology, 2021: 7-10.
[3] 娄云天, 何盛宇, 陈旭东, 等. 海洋环境中油气管道的微生物腐蚀研究进展[J]. 表面技术, 2022, 51(5): 129-138.
LOU Y T, HE S Y, CHEN X D, et al.Research Progress on Microbiologically Influenced Corrosion of Oil and Gas Pipelines in Marine Environment[J]. Surface Technology, 2022, 51(5): 129-138.
[4] 陈君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究[J]. 摩擦学学报, 2012, 32(1): 1-6.
CHEN J, YAN F Y, WANG J Z.Corrosion Wear Properties of TC4 Titanium Alloy in Artificial Seawater[J]. Tribology, 2012, 32(1): 1-6.
[5] 彭文山, 赵建仓, 孙佳钰, 等. 船舶海水管路冲刷腐蚀仿真分析及预测[J]. 装备环境工程, 2021, 18(9): 64-71.
PENG W S, ZHAO J C, SUN J Y, et al.Simulation Analysis and Prediction of Erosion-Corrosion of Seawater Pipelines in Ships[J]. Equipment Environmental Engineering, 2021, 18(9): 64-71.
[6] SHAMSUDIN S R, RAHMAT A, ISA M C, et al.Electrochemical Corrosion Behaviour of Mg-(Ca, Mn) Sacrificial Anodes[J]. Advanced Materials Research, 2013, 795: 530-534.
[7] 曹青敏, 刘岩, 刘斌, 等. 铜镍合金在海水冲刷条件下的腐蚀行为与机理研究进展[J]. 中国材料进展, 2022, 41(5): 398-406.
CAO Q M, LIU Y, LIU B, et al.Progress in the Study of Corrosion Behavior and Mechanism for Copper-Nickel Alloys under Seawater Erosion Condition[J]. Materials China, 2022, 41(5): 398-406.
[8] 中国兵器工业第五九研究所. GJB 8893—2017《军用装备自然环境试验方法》实施指南[M]. 重庆: 中国兵器工业第五九研究所, 2020.
China Ordnance Industry Research Institute No 59. The Implementation Guide of “Natural environment test methods for military material” GJB8893—2017[M]. Chongqing: China Ordnance Industry Research Institute No 59, 2020.
[9] 中国军委装备发展部. 军用装备自然环境试验方法: GJB 8893—2017[S]. 北京: 国家军用标准出版发行部, 2017.
Equipment Development Department of the Central Military Commission of China. Natural Environment Test Methods for Military Material: GJB 8893—2017[S]. Beijing: Publication and Distribution Department of National Military Standards, 2017.
[10] 中国人民解放军总装备部. 军用装备实验室环境试验方法: GJB 150A—2009[S]. 北京: 总装备部军标出版发行部, 2010.
People's Liberation Army General Armaments Department. Laboratory Environmental Test Methods for Military Materiel: GJB 150A—2009[S]. Beijing: Military Standard Publishing and Distribution Department of the General Armament Department, 2010.
[11] PARDO A, MERINO M C, COY A E, et al.Influence of Microstructure and Composition on the Corrosion Behaviour of Mg/Al Alloys in Chloride Media[J]. Electrochimica Acta, 2008, 53(27): 7890-7902.
[12] YAMAUCHI K, ASAKURA S.Galvanic Dissolution Behavior of Magnesium-1 Mass%manganese-0.5 Mass%calcium Alloy Anode for Cathodic Protection in Fresh Water[J]. Materials Transactions, 2003, 44(5): 1046-1048.
[13] 刘明耀, 江静华, 高正, 等. 海洋装备防腐用镁合金牺牲阳极的研究进展[J]. 现代交通与冶金材料, 2022, 2(1): 61-70.
LIU M Y, JIANG J H, GAO Z, et al.Research Progress of Sacrificial Mg Alloy Anode for Corrosion Protection of Marine Equipment[J]. Modern Transportation and Metallurgical Materials, 2022, 2(1): 61-70.
[14] PARDO A, MERINO M C, COY A E, et al.Influence of Microstructure and Composition on the Corrosion Behaviour of Mg/Al Alloys in Chloride Media[J]. Electrochimica Acta, 2008, 53(27): 7890-7902.
[15] 杜琮昊, 白秀琴. 海洋环境下典型金属材料腐蚀与磨损研究进展[J]. 润滑与密封, 2021, 46(2): 121-133.
DU C H, BAI X Q.Research Progress on Corrosion and Wear of Typical Metal Materials under Marine Environment[J]. Lubrication Engineering, 2021, 46(2): 121-133.
[16] 赵秀宁. 海洋工程装备重防腐涂料应用分析[J]. 天津化工, 2022, 36(5): 69-71.
ZHAO X N.Application Analysis of Heavy-Duty Anticorrosive Coatings for Offshore Engineering Equipment[J]. Tianjin Chemical Industry, 2022, 36(5): 69-71.
[17] DING H Y, ZHOU G H, DAI Z D, et al.Corrosion Wear Behaviors of 2024Al in Artificial Rainwater and Seawater at Fretting Contact[J]. Wear, 2009, 267(1/2/3/4): 292-298.
[18] 李斌, 郭嵩, 李伟, 等. 海水管路破损原因分析及防治措施[J]. 舰船科学技术, 2020, 42(7): 177-181.
LI B, GUO S, LI W, et al.Research on Breakage Cause of Sea-Water Supply Pipe and Control Measures[J]. Ship Science and Technology, 2020, 42(7): 177-181.
[19] STEMP M, MISCHLER S, LANDOLT D.The Effect of Contact Configuration on the Tribocorrosion of Stainless Steel in Reciprocating Sliding under Potentiostatic Control[J]. Corrosion Science, 2003, 45(3): 625-640.
[20] 康思波, 姜圣俊, 刁张章, 等. 金属-涂层体系的2种力学-环境耦合加速失效试验研究[J]. 涂料工业, 2021, 51(8): 60-67.
KANG S B, JIANG S J, DIAO Z Z, et al.Study of Accelerated Failure Test of Metal Coatings System Based on Two Mechanical Environments[J]. Paint & Coatings Industry, 2021, 51(8): 60-67.
[21] 陈尧. 腐蚀环境下基于全寿命设计需求与时变可靠度的钢结构性能退化规律研究[D]. 南京: 东南大学, 2021.
CHEN Y.Study on Performance Degradation Law of Steel Structure Based on Life-Cycle Design Requirements and Time-Varying Reliability in Corrosive Environment[D]. Nanjing: Southeast University, 2021.
[22] 苏威. 长续航力水下机器人腐蚀问题与防护方法研究[D]. 沈阳: 东北大学, 2018.
SU W.Research on Corrosion Problems and Protection Methods of Long Endurance Underwater Vehicle[D]. Shenyang: Northeastern University, 2018.
[23] 张周. 半潜平台腐蚀防护监测系统设计研究[D]. 大连: 大连理工大学, 2020.
ZHANG Z.Research on Design of Corrosion Protection Monitoring System for Semi-Submersible Platform[D]. Dalian: Dalian University of Technology, 2020.
[24] 李文生. 多界面CrN/CrAIN 涂层在海水环境中的腐蚀耐磨性能研究[J]. 表面技术, 2022, 51(1): 69-78.
LI W S.Research on Tribocorrosion of Multi-interface CrN/CrAIN Coating in Seawater Environment[J].Surface Technology, 2022, 51(1): 69-78.
[25] 潘兴隆. 舰船内腐蚀海水管路剩余强度预测模型级试验验证[J]. 船舶力学, 2021, 25(2): 202-209.
PAN X L.Prediction Model for Residual Strength of Warship Seawater Pipelines with Internal Corrosion and Test Verification[J]. Journal of Ship Mechanics, 2021, 25(2): 202-209.
[26] 李建秋, 向利, 杨阳, 等. 海洋环境氯离子沉降率及腐蚀严酷度评价研究[J]. 装备环境工程, 2021, 18(2): 103-107.
LI J Q, XIANG L, YANG Y, et al.Evaluation of Sedimentation Rate and Corrosion Rate of Chloride Ions in Marine Environment[J]. Equipment Environmental Engineering, 2021, 18(2): 103-107.
[27] 中国国家标准化管理委员会. 色漆和清漆涂层老化的评级方法: GB/T 1766—2008[S]. 北京: 中国标准出版社, 2008.
Standardization Administration of the People's Republic of China. Paints and Varnishes Rating Schemes of Degradation of Coats: GB/T 1766—2008[S]. Beijing: Standards Press of China, 2008.
[28] 国家市场监督管理总局, 国家标准化管理委员会. 漆膜划圈试验: GB/T 1720—2020[S]. 北京: 中国标准出版社, 2020.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Circle-Drawing Test of Coating Films: GB/T 1720—2020 [S]. Beijing: Standards Press of China, 2020.
PDF(2340 KB)

Accesses

Citation

Detail

Sections
Recommended

/