Experiment Study on Fatigue Performance of Copper Alloy Thin Plate for Anti Icing of Propeller Blades

YANG Tingyong, DENG Wen, LI Tianyong, LIAO Yunfei, LAN Zhiyun

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 100-107.

PDF(10585 KB)
PDF(10585 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 100-107. DOI: 10.7643/issn.1672-9242.2025.08.013
Aviation and Aerospace Equipment

Experiment Study on Fatigue Performance of Copper Alloy Thin Plate for Anti Icing of Propeller Blades

  • YANG Tingyong1, DENG Wen1, LI Tianyong1, LIAO Yunfei2, LAN Zhiyun3
Author information +
History +

Abstract

The work aims to compare and study the fatigue performance of CuNi23 alloy and T2 purple copperthin plates applied to helicopter blade anti icing copper alloy materials, to provide a scientific basis for predicting the fatigue life of copper alloythin plates. Finite element analysis software was used to perform static and modal analysis on static and fatigue thin plate test specimens. The lifting method and the grouping method were used to conduct fatigue experiments on CuNi23 alloy and T2 copper thin plates. The three parameter Stromeyer equation was used to fit the S-N curves of the two materials, and the S-N curve fitting equation was obtained. Finally, the fatigue fracture surfaces of the two materials were compared and analyzed using a scanning electron microscope. The finite element analysis results indicated that both the static tensile test specimens and fatigue test specimens designed in this paper met the testing requirements. The fatigue limits of CuNi23 alloy and T2 copper in the 1×107 high life zone were measured to be 269 MPa and 123 MPa, respectively, using the lifting method fatigue test; S-N fitting curves of CuNi23 alloy and T2 purple copper, respectively S=259.26(1+0.111 2/N0.631 7) and S=9.127×10-7(1+1.719×108/N0.094 2). The fatigue resistance of CuNi23 alloy is significantly better than that of T2 copper. The fatigue S-N curve indicates that the fatigue curve of CuNi23 alloy tends to flatten, while the fatigue curve of T2 copper shows a decreasing trend. The fatigue band spacing of CuNi23 alloy is shorter than that of T2 copper, with a lower crack propagation rate and better fatigue performance.

Key words

CuNi23 alloy / T2 purple copper / fatigue test / S-N curve / lifting method / group method

Cite this article

Download Citations
YANG Tingyong, DENG Wen, LI Tianyong, LIAO Yunfei, LAN Zhiyun. Experiment Study on Fatigue Performance of Copper Alloy Thin Plate for Anti Icing of Propeller Blades[J]. Equipment Environmental Engineering. 2025, 22(8): 100-107 https://doi.org/10.7643/issn.1672-9242.2025.08.013

References

[1] 谌广昌, 纪双英, 赵文明, 等. 直升机旋翼除冰系统加热垫试验研究[J]. 航空工程进展, 2019, 10(2): 201-205.
CHEN G C, JI S Y, ZHAO W M, et al.Experimental Study on Heating Pad of Helicopter Rotor Deicing System[J]. Advances in Aeronautical Science and Engineering, 2019, 10(2): 201-205.
[2] 胡林权. 民用飞机机翼电加热防/除冰应用现状及技术难点[J]. 航空科学技术, 2016, 27(7): 8-11.
HU L Q.Application Status and Technical Difficulties for Civil Aircraft Wing Electrothermal Anti-/de-Icing[J]. Aeronautical Science & Technology, 2016, 27(7): 8-11.
[3] 熊建军, 刘锡, 冉林, 等. 基于控制律的电加热防除冰系统设计与验证[J]. 测控技术, 2021, 40(2): 130-134.
XIONG J J, LIU X, RAN L, et al.Design and Verification of Electrical Heating Anti-Icing/Deicing System Based on Control Law[J]. Measurement & Control Technology, 2021, 40(2): 130-134.
[4] 王晋, 纪双英, 益小苏, 等. 飞行器防/除冰技术研究进展[J]. 航空制造技术, 2015, 58(S2): 30-32.
WANG J, JI S Y, YI X S, et al.Progress of the Aircraft Anti-Icing/de-Icing[J]. Aeronautical Manufacturing Technology, 2015, 58(S2): 30-32.
[5] 樊文欣, 郭佩剑, 原霞, 等. 载荷和转速对铜合金材料摩擦磨损性能的影响[J]. 摩擦学学报, 2021, 41(6): 821-832.
FAN W X, GUO P J, YUAN X, et al.Effects of Load and Speed on the Friction and Wear Properties of Copper Alloys[J]. Tribology, 2021, 41(6): 821-832.
[6] SENTHIL KUMAR, MANISEKAR , SUBRAMANIAN & E , et al. Dry Sliding Friction and Wear Characteristics of Cu-Sn Alloy Containing Molybdenum Disulfide[J]. Tribology Transactions, 2013, 56(5): 857-866.
[7] 王月. 304L不锈钢/T2铜扩散焊接头组织和力学性能研究[D]. 沈阳: 东北大学, 2017.
WANG Y.Study on Microstructure and Mechanical Properties of 304L Stainless Steel/T2 Copper Diffusion Welded Joint[D]. Shenyang: Northeastern University, 2017.
[8] 余章卫. 直升机复合材料桨叶疲劳渐进损伤分析方法研究[D]. 南京: 南京航空航天大学, 2012.
YU Z W.Research on Fatigue Progressive Damage Analysis Method of Helicopter Composite Blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[9] 王久龙, 杨库, 曹金华, 等. 直升机尾桨叶疲劳试验技术的研究[J]. 测控技术, 2022, 41(3): 49-54.
WANG J L, YANG K, CAO J H, et al.Study on Fatigue Test Technology of Helicopter Tail Rotor Blade[J]. Measurement & Control Technology, 2022, 41(3): 49-54.
[10] 刘鸿志, 詹晓非. T2紫铜平面微弹簧疲劳性能研究[J]. 有色金属工程, 2020, 10(12): 38-43.
LIU H Z, ZHAN X F.Fatigue Performance of T2 Copper Planar Micro-Spring[J]. Nonferrous Metals Engineering, 2020, 10(12): 38-43.
[11] 程卫真. 共轴双旋翼桨叶结构载荷试飞研究[J]. 应用力学学报, 2019, 36(5): 1005-1011.
CHENG W Z.Flight Test Technique for Twin-Rotor Blade Structural Load of a Coaxial Helicopter[J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1005-1011.
[12] 张赛军, 龚小龙, 李健强, 等. 尺寸效应下的紫铜薄板力学性能试验研究[J]. 华南理工大学学报(自然科学版), 2016, 44(10): 8-14.
ZHANG S J, GONG X L, LI J Q, et al.Experimental Investigation into Mechanical Properties of Copper Sheet with Size Effects[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(10): 8-14.
[13] YUE F L, JIA Y, ZHANG M X, et al.Research on very High Cycle Fatigue Behavior of Pure Copper[J]. Materials Today Communications, 2025, 44: 112109.
[14] 朱宝辉, 钟景明, 汪凯, 等. 高强度铍铜合金QBe2棒材室温旋转弯曲疲劳行为[J]. 稀有金属, 2021, 45(10): 1153-1161.
ZHU B H, ZHONG J M, WANG K, et al.Rotational Bending Fatigue Behavior of High Strength Beryllium Copper Alloy QBe2 Rod at Room Temperature[J]. Chinese Journal of Rare Metals, 2021, 45(10): 1153-1161.
[15] 苏飞, 张铮, 熊吉, 等. 电镀铜薄膜力学性能的实验研究[J]. 实验力学, 2012, 27(5): 565-569.
SU F, ZHANG Z, XIONG J, et al.Experimental Study of Mechanical Properties for Electroplated Copper Film[J]. Journal of Experimental Mechanics, 2012, 27(5): 565-569.
[16] 中国航空工业总公司. 金属材料轴向加载疲劳试验方法: HB 5287—1996[S]. 北京: 中国标准出版社, 1996.
AVIC. Axial Loading Fatigue Test Method for Metallic Materials: HB 5287—1996[S]. Beijing: Standards Press of China, 1996.
[17] 高宇, 刘昆, 姜文安. SPS夹层板动力学响应的数值计算与实验[J]. 船舶力学, 2022, 26(5): 727-738.
GAO Y, LIU K, JIANG W A.Numerical Calculation and Experiments of the Dynamic Response of Sandwich Plate System[J]. Journal of Ship Mechanics, 2022, 26(5): 727-738.
[18] 孙冠泽, 曹睿, 周鑫, 等. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297.
SUN G Z, CAO X, ZHOU X, et al.Study on High Cycle Fatigue Properties of TNM-TiAlAlloy at Room Temperature[J]. Materials Reports, 2023, 37(12): 21090297.
[19] 张璐, 王梓菲, 刘年富, 等. 碲改质C70S6非调质钢的旋转弯曲疲劳性能[J]. 机械工程材料, 2024, 48(4): 1-7.
ZHANG L, WANG Z F, LIU N F, et al.Rotating Bending Fatigue Properties of Tellurium Modified C70S6 Non- Quenched and Tempered Steel[J]. Materials for Mechanical Engineering, 2024, 48(4): 1-7.
[20] 曾本银, 潘春蛟, 喻溅鉴, 等. 直升机金属结构的全范围安全S-N曲线确定方法[J]. 直升机技术, 2008(2): 1-5.
ZENG B Y, PAN C J, YU J J, et al.Full Range Safe S-N Curve Confirmation Method of Metallic Structure on Helicopter[J]. Helicopter Technique, 2008(2): 1-5.
[21] 中国国家标准化管理委员会. 数据的统计处理和解释正态样本离群值的判断和处理: GB/T 4883—2008[S]. 北京: 中国标准出版社, 2008.
Standardization Administration of the People's Republic of China. Statistical Interpretation of Data Detection and Treatment of Outliers in the Normal Sample: GB/T 4883—2008[S]. Beijing: Standards Press of China, 2008.
[22] 张忠明, 服部修次, 田川纪英, 等. 铜合金的疲劳寿命预测[J]. 材料热处理学报, 2005, 26(5): 76-79.
ZHANG Z M, HATTORI S, MAEKAWA H, et al.Prediction of Fatigue Life for Copper Alloys[J]. Transactions of Materids and Heat Treatment, 2005, 26(5): 76-79.
[23] 刘麟, 盛圆圆, 詹普杰, 等. 激光喷丸强化铜锌合金及其疲劳行为[J]. 中国有色金属学报, 2019, 29(2): 295-302.
LIU L, SHENG Y Y, ZHAN P J, et al.Laser Shot Peening on Brass and Its Fatigue Behavior[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(2): 295-302.
[24] 俞延庆, 周留成, 宫健恩, 等. GH4169高温合金激光冲击强化层微观结构和微动疲劳行为研究[J]. 表面技术, 2022, 51(10): 38-48.
YU Y Q, ZHOU L C, GONG J E, et al.Microstructure and Fretting Fatigue Behaviour of GH4169 Superalloy after Laser Shock Peening[J]. Surface Technology, 2022, 51(10): 38-48.
[25] 赵睿, 钟振前, 付航. 基于Paris公式的螺栓疲劳断口定量反推与有限元验证[J]. 冶金分析, 2024, 44(12): 84-92.
ZHAO R, ZHONG Z Q, FU H.Quantitative Inversion of Bolt Fatigue Fracture Based on Paris Formula and Finite Element Verification[J]. Metallurgical Analysis, 2024, 44(12): 84-92.
PDF(10585 KB)

Accesses

Citation

Detail

Sections
Recommended

/