Study on Combustion Characteristics of Combustibles in Van-type Transport Vehicle

WANG Yijun, HU Yupeng, CHEN Shenglai, JI Jie, LI Minghai

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 130-136.

PDF(2723 KB)
PDF(2723 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (8) : 130-136. DOI: 10.7643/issn.1672-9242.2025.08.016
Key Projects Equipment

Study on Combustion Characteristics of Combustibles in Van-type Transport Vehicle

  • WANG Yijun1, HU Yupeng1, CHEN Shenglai1, JI Jie2, LI Minghai1
Author information +
History +

Abstract

The work aims to research the combustion characteristics of combustibles in van-type transport vehicles (such as combustion process, heat release rate (HRR), and ignition point, etc. to provide basis data for numerical simulation and safety analysis of van-type transport vehicles under fire accidents. Eight kinds of combustibles, including seat foam, seat fabric cover, rubber tires, wood plywood, aluminum-plastic panels, floor leather, cable insulation and wires, were identified and made into standard samples by analyzing the combustibles of van-type transport vehicles. The heat release rate (HRR) of samples was tested by cone calorimeter to obtain HRR-time curves and the HRR peak value, etc. A K-type thermocouple was installed on the surface of the sample to measure the ignition temperature. Meanwhile, the combustion process of combustible samples was recorded by camera. The seat foam combustion mode was unimodal, the maximum HRRPUA (heat release rate per unit area) was 236 kW/m2 and the ignition temperature was 216.5 ℃. The burning mode of seat surface fabric was unimodal, the maximum HRRPUA was 54 kW/m2 and the ignition temperature was 135 ℃. The combustion mode of rubber tire was bimodal, the maximum HRRPUA was 166.8 kW/m2 and 530 kW/m2 respectively, the ignition temperature was 337.1 ℃, and the combustion time was the longest. The burning mode of wood plywood was bimodal, the maximum HRRPUA was 117 kW/m2 and 159 kW/m2 respectively, and the ignition temperature was 186.6 ℃. The combustion mode of aluminum-plastic plate was bimodal superposition mode, the maximum HRRPUA was 210 kW/m2 and the ignition temperature was 167.2 ℃. The combustion mode of floor leather was unimodal, the maximum HRRPUA was 103 kW/m2 and the ignition temperature was 145 ℃. The burning mode of cable insulation skin was unimodal, the maximum HRRPUA was 374 kW/m2 and the ignition temperature was 167.9 ℃. The maximum HRRPUA was 105 kW/m2 and the ignition temperature was 194 ℃. The combustion characteristics and parameters of 8 kinds of combustibles are obtained, such as combustion mode, HRRPUA-time curves, ignition temperature, which provide basic data for numerical simulation of Van-type transport vehicle fire.

Key words

van-type transport vehicle / combustibles / combustion performance / heat release rate (HRR) / ignition temperature

Cite this article

Download Citations
WANG Yijun, HU Yupeng, CHEN Shenglai, JI Jie, LI Minghai. Study on Combustion Characteristics of Combustibles in Van-type Transport Vehicle[J]. Equipment Environmental Engineering. 2025, 22(8): 130-136 https://doi.org/10.7643/issn.1672-9242.2025.08.016

References

[1] 中国国家标准化管理委员会. 专用汽车和专用挂车术语、代号和编制方法: GB/T 17352—2009[S]. 北京: 中国标准出版社, 2010.
Standardization Administration of the People's Republic of China. Terms, Codes and Compilation Methods of Special Purpose Vehicles and Special Purpose Trailers: GB/T 17352—2009[S]. Beijing: Standards Press of China, 2010.
[2] 郑荣升. 浅析车辆火灾原因与调查[J]. 机电技术, 2014, 37(3): 87-89.
ZHENG R S.Analysis on the Causes and Investigation of Vehicle Fire[J]. Mechanical & Electrical Technology, 2014, 37(3): 87-89.
[3] 张得胜, 张斌, 刘振刚, 等. 国外车辆火灾原因调查技术研究[J]. 消防科学与技术, 2012, 31(4): 433-435.
ZHANG D S, ZHANG B, LIU Z G, et al.Foreign Fire Cause Investigation Technology of Car Fire[J]. Fire Science and Technology, 2012, 31(4): 433-435.
[4] 孙勇, 乔新瑞, 张术. 国内外轨道车辆火灾事故统计与预防措施[J]. 科技创新导报, 2016, 13(7): 40-42.
SUN Y, QIAO X R, ZHANG S.Statistics and Preventive Measures of Rail Vehicle Fire Accidents at Home and Abroad[J]. Science and Technology Innovation Herald, 2016, 13(7): 40-42.
[5] 马林才, 季永青, 方栋华. 城市公交车安全现状调研与危险性分析[J]. 消防科学与技术, 2017, 36(1): 119-122.
MA L C, JI Y Q, FANG D H.Analysis on the Security Situation and Risk Analysis about the City Buses[J]. Fire Science and Technology, 2017, 36(1): 119-122.
[6] 李争, 刘爱群, 吴傲庭, 等. 轨道交通车辆火灾防控系统综述[J]. 铁道机车车辆, 2022, 42(3): 28-35.
LI Z, LIU A Q, WU A T, et al.Overview of Fire-Prevention Control System of Railway Vehicles[J]. Railway Locomotive & Car, 2022, 42(3): 28-35.
[7] 贾杰, 王新. 轨道车辆防火标准及技术研究[J]. 中国胶粘剂, 2021, 30(9): 67-70.
JIA J, WANG X.Research on Fire Protection Standard and Technology of Rail Vehicles[J]. China Adhesives, 2021, 30(9): 67-70.
[8] 张建敏, 郭会生, 刘小霞, 等. 轨道车辆地板耐火性能分析研究[J]. 城市轨道交通研究, 2021, 24(9): 39-41.
ZHANG J M, GUO H S, LIU X X, et al.Research on Fire Resistance Performance of Railway Vehicle Floor Assembly[J]. Urban Mass Transit, 2021, 24(9): 39-41.
[9] 黎涛. 新能源汽车火灾风险及安全对策分析[J]. 科技创新与生产力, 2022(12): 51-53.
LI T.Fire Risks and Safety Countermeasures of New Energy Vehicles[J]. Sci-Tech Innovation and Productivity, 2022(12): 51-53.
[10] 张良, 张得胜, 陈克, 等. 基于模组加热的新能源汽车火灾试验研究[J]. 安全与环境学报, 2023, 23(10): 3600-3605.
ZHANG L, ZHANG D S, CHEN K, et al.Experimental Research on Thermal Runaway Behavior for Electric Vehicles Based on Module Heating[J]. Journal of Safety and Environment, 2023, 23(10): 3600-3605.
[11] 牛奕, 王笑笑, 黄钦. 基于Pyrosim的隧道火灾数值模拟与分析[J]. 工业安全与环保, 2023, 49(3): 55-58.
NIU Y, WANG X X, HUANG Q.Numerical Simulation and Analysis of Tunnel Fire Based on Pyrosim[J]. Industrial Safety and Environmental Protection, 2023, 49(3): 55-58.
[12] 袁勇. 短隧道火灾中隧道尺寸对烟气层厚度的影响[J]. 黑龙江交通科技, 2024, 47(12): 114-118.
YUAN Y.Influence of Tunnel Size on Smoke Layer Thickness in Short Tunnel Fire[J]. Communications Science and Technology Heilongjiang, 2024, 47(12): 114-118.
[13] 王建帆, 苏燕辰. 高速列车材料测试及轰燃研究[J]. 中国测试, 2016, 42(2): 127-131.
WANG J F, SU Y C.Materials Testing and Flashover Research in High-Speed Trains[J]. China Measurement & Test, 2016, 42(2): 127-131.
[14] 李智国, 厉志强, 刘伟明. 高速列车火灾热释放速率计算方法研究[J]. 铁道机车车辆, 2018, 38(1): 15-18.
LI Z G, LI Z Q, LIU W M.Study on the Calculation Methods of High-Speed Train Heat Release Rate[J]. Railway Locomotive & Car, 2018, 38(1): 15-18.
[15] 苟琦林. 高速列车客室火灾蔓延特性研究[D]. 成都: 西南交通大学, 2018.
GOU Q L.Study on Fire Spread Characteristics in Passenger Compartment of High-Speed Train[D]. Chengdu: Southwest Jiaotong University, 2018.
[16] 周远龙. 高速列车火灾热释放速率研究[D]. 成都: 西南交通大学, 2021.
ZHOU Y L.Study on Heat Release Rate of High-Speed Train Fire[D]. Chengdu: Southwest Jiaotong University, 2021.
[17] 杨宇轩, 刘畅, 仇培云, 等. 含坡度隧道车辆阻塞下全尺寸火灾实验[J]. 清华大学学报(自然科学版), 2020, 60(12): 1030-1038.
YANG Y X, LIU C, QIU P Y, et al.Full-Scale Experimental Study of a Fire under a Vehicle in a Sloped Tunnel[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(12): 1030-1038.
[18] 杨晓菡. 隧道内不同车辆的热释放速率试验研究综述[C]// 2019年中国消防协会科学技术年会论文集. 北京: 中国消防协会, 2019.
YANG X H.Summary of Experimental Study on Heat Release Rate of Different Vehicles in Tunnel[C]// Proceedings of the 2019 Annual Science and Technology Annual Meeting of China Fire Protection Association. Beijing: China Fire Protection Association, 2019.
[19] 李炎锋, 杜甜美, 刘爽, 等. 城市交通隧道电动汽车火灾安全研究进展[J]. 消防科学与技术, 2024, 43(9): 1195-1203.
LI Y F, DU T M, LIU S, et al.Research Progress on Fire Safety Protection of Electric Vehicles in Urban Traffic Tunnels[J]. Fire Science and Technology, 2024, 43(9): 1195-1203.
[20] 文质彬, 李玉倩. 城轨车辆内饰件燃烧特性分析[J]. 技术与市场, 2023, 30(1): 75-78.
WEN Z B, LI Y Q.Analysis of Combustion Characteristics of Urban Rail Interior Components[J]. Technology and Market, 2023, 30(1): 75-78.
[21] 李国辉. 不同类型车辆的火灾热释放速率[J]. 消防科学与技术, 2016, 35(5): 625.
LI G H.Fire Heat Release Rate of Different Types of Vehicles[J]. Fire Science and Technology, 2016, 35(5): 625.
[22] 代仲宇, 于丽, 王明年, 等. 铁路隧道旅客列车火灾热释放速率的确定方法[J]. 铁道标准设计, 2017, 61(1): 55-59.
DAI Z Y, YU L, WANG M N, et al.Method to Determine Heat Release Rate of Passenger Train in Railway Tunnel in Case of Fire[J]. Railway Standard Design, 2017, 61(1): 55-59.
[23] 国防科学技术工业委员会. 军用汽车安全性要求: GJB 1473—1992[S]. 北京: 中国标准出版社, 1992.
National Defense Science, Technology and Industry Committee. Military Motor Vehicle Safety Standards: GJB 1473—1992[S]. Beijing: Standards Press of China, 1992.
[24] 王康, 刘运传, 孟祥艳, 等. 锥形量热仪测量材料热释放速率的影响因素分析[J]. 消防科学与技术, 2018, 37(4): 449-452.
WANG K, LIU Y C, MENG X Y, et al.Analysis on the Influence Factors of Heat Release Rate Tested by Cone Calorimeter[J]. Fire Science and Technology, 2018, 37(4): 449-452.
[25] 孙勇, 田鑫, 刘彦彤, 等. 系列化中国标准地铁主要部件对车辆火灾热释放速率的影响研究[J]. 机车电传动, 2022(2): 15-20.
SUN Y, TIAN X, LIU Y T, et al.Study on Influence of Main Components of Serialized China Standard Metro Train on Vehicle Fire Heat Release Rate[J]. Electric Drive for Locomotives, 2022(2): 15-20.

Funding

Development Fund Project of China Academy of Engineering Physics (TCGH0421); Equipment Development Advance Research Project (322080301)
PDF(2723 KB)

Accesses

Citation

Detail

Sections
Recommended

/